Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Oncotarget ; 12(15): 1564-1565, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34316335

RESUMO

[This corrects the article DOI: 10.18632/oncotarget.3522.].

3.
FASEB J ; 33(11): 11629-11639, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31348679

RESUMO

Brain microvascular endothelial cells (BMECs) interact with astrocytes and pericytes to form the blood-brain barrier (BBB). Their compromised function alters the BBB integrity, which is associated with early events in the pathogenesis of cancer, neurodegenerative diseases, and epilepsy. Interestingly, these conditions also induce the expression of heat shock proteins (HSPs). Here we review the contribution of major HSP families to BMEC and BBB function. Although investigators mainly report protective effects of HSPs in brain, contrasted results were obtained in BMEC, which depend both on the HSP and on its location, intra- or extracellular. The therapeutic potential of HSPs must be scrupulously analyzed before targeting them in patients to reduce the progression of brain lesions and improve neurologic outcomes in the long term.-Thuringer, D., Garrido, C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection?


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Neuroproteção/fisiologia , Animais , Transporte Biológico/fisiologia , Diferenciação Celular/fisiologia , Humanos , Chaperonas Moleculares/metabolismo
4.
Oncotarget ; 9(70): 33302-33311, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30279961

RESUMO

Chloride intracellular channel 1 (CLIC1) is highly expressed and secreted by human glioblastoma cells and cell lines such as U87, initiating cell migration and tumor growth. Here, we examined whether CLIC1 could be transferred to human primary microvascular endothelial cells (HMEC). We previously reported that the oncogenic microRNA, miR-5096, increased the release of extracellular vesicles (EVs) by which it increased its own transfer from U87 to surrounding cells. Thus, we also examined its effect on the CLIC1 transfer. In homotypic cultures, miR-5096 did not increase the expression of CLIC1 in U87 nor in HMEC. However, the endothelial CLIC1 level increased after exposure to EVs released by U87, and even more by miR-5096-loaded U87. The EVs-transferred CLIC1 was active in HMEC, promoting endothelial sprouting in matrigel. Cell exposure to EVs induced cytosolic Ca2+ spikes which were dependent on the transient receptor potential melastatin member 7 (TRPM7). TRPM7 silencing prevented Ca2+ spikes and the subsequent CLIC1 delivery into HMEC. Our data suggest that the vesicular transfer of CLIC1 between cells requires TRMP7 expression in recipient endothelial cells. How the vesicular transfer of CLIC1 is modulated in cancer therapy is a future challenge.

5.
Biochim Biophys Acta Biomembr ; 1860(1): 202-215, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28693897

RESUMO

Over the past 50years, increasing experimental evidences have established that connexins (Cxs) and gap junctional intercellular communication (GJIC) ensure an important role in both the onset and development of cancerous processes. In the present review, we focus on the impact of Cxs and GJIC during the development of prostate cancer (PCa), from the primary growth mainly localized in acinar glands and ducts to the distant metastasis mainly concentrated in bone. As observed in several other types of solid tumours, Cxs and especially Cx43 exhibit an ambivalent role with a tumour suppressor effect in the early stages and, conversely, a rather pro-tumoural profile for most of invasion and dissemination steps to secondary sites. We report here the current knowledge on the function of Cxs during PCa cells migration, cytoskeletal dynamics, proteinases activities and the cross talk with the surrounding stromal cells in the microenvironment of the tumour and the bones. In addition, we discuss the role of Cxs in the bone tropism even if the prostate model is rarely used to study the complete sequence of cancer dissemination compared to breast cancer or melanoma. Even if not yet fully understood, these recent findings on Cxs provide new insights into their molecular mechanisms associated with progression and bone targeted behaviour of PCa. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.


Assuntos
Conexina 43 , Junções Comunicantes , Proteínas de Neoplasias , Neoplasias da Próstata , Microambiente Tumoral , Animais , Conexina 43/genética , Conexina 43/metabolismo , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Humanos , Masculino , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
6.
Front Mol Neurosci ; 10: 246, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824376

RESUMO

Brain microvascular endothelial cells (BMECs) separate the peripheral blood from the brain. These cells, which are surrounded by basal lamina, pericytes and glial cells, are highly interconnected through tight and gap junctions. Their permeability properties restrict the transfer of potentially useful therapeutic agents. In such a hermetic system, the gap junctional exchange of small molecules between cerebral endothelial and non-endothelial cells is crucial for maintaining tissue homeostasis. MicroRNA were shown to cross gap junction channels, thereby modulating gene expression and function of the recipient cell. It was also shown that, when altered, BMEC could be regenerated by endothelial cells derived from pluripotent stem cells. Here, we discuss the transfer of microRNA through gap junctions between BMEC, the regeneration of BMEC from induced pluripotent stem cells that could be engineered to express specific microRNA, and how such an innovative approach could benefit to the treatment of glioblastoma and other neurological diseases.

7.
Oncotarget ; 8(23): 37681-37693, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28445150

RESUMO

Inwardly rectifying potassium channels (Kir), and especially the barium-sensitive Kir4.1 encoded by KCNJ10, are key regulators of glial functions. A lower expression or mislocation of Kir4.1 is detected in human brain tumors. MicroRNAs participate in the regulation of ionic channels and associated neurologic disorders. Here, we analyze effects of miR-5096 on the Kir4.1 expression and function in two glioblastoma cell lines, U87 and U251. Using whole-cell patch-clamp and western-blot analysis, we show that cell loading with miR-5096 decreases the Kir4.1 protein level and associated K+ current. Cell treatment with barium, a Kir4.1 blocker, or cell loading of miR-5096 both increase the outgrowth of filopodia in glioma cells, as observed by time-lapse microscopy. Knocking-down Kir4.1 expression by siRNA transfection similarly increased both filopodia formation and invasiveness of glioma cells as observed in Boyden chamber assay. MiR-5096 also promotes the release of extracellular vesicles by which it increases its own transfer to surrounding cells, in a Kir4.1-dependent manner in U251 but not in U87. Altogether, our results validate Kir4.1 as a miR-5096 target to promote invasion of glioblastoma cells. Our data highlight the complexity of microRNA effects and the role of K+ channels in cancer.


Assuntos
Glioblastoma/metabolismo , MicroRNAs/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Movimento Celular , Células Cultivadas , Humanos , Pentamidina , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/farmacologia , Transfecção
8.
Oncotarget ; 7(45): 73925-73934, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27661112

RESUMO

Extensive invasion and angiogenesis are hallmark features of malignant glioblastomas. Here, we co-cultured U87 human glioblastoma cells and human microvascular endothelial cells (HMEC) to demonstrate the exchange of microRNAs that initially involve the formation of gap junction communications between the two cell types. The functional inhibition of gap junctions by carbenoxolone blocks the transfer of the anti-tumor miR-145-5p from HMEC to U87, and the transfer of the pro-invasive miR-5096 from U87 to HMEC. These two microRNAs exert opposite effects on angiogenesis in vitro. MiR-5096 was observed to promote HMEC tubulogenesis, initially by increasing Cx43 expression and the formation of heterocellular gap junctions, and secondarily through a gap-junction independent pathway. Our results highlight the importance of microRNA exchanges between tumor and endothelial cells that in part involves the formation of functional gap junctions between the two cell types.


Assuntos
Células Endoteliais/metabolismo , Junções Comunicantes/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , MicroRNAs/genética , Comunicação Celular/genética , Linhagem Celular Tumoral , Expressão Gênica , Glioblastoma/patologia , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Transporte de RNA
9.
Oncotarget ; 7(19): 28160-8, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27058413

RESUMO

Gap junctional communication between cancer cells and blood capillary cells is crucial to tumor growth and invasion. Gap junctions may transfer microRNAs (miRs) among cells. Here, we explore the impact of such a transfer in co-culture assays, using the antitumor miR-145 as an example. The SW480 colon carcinoma cells form functional gap junction composed of connexin-43 (Cx43) with human microvascular endothelial cells (HMEC). When HMEC are loaded with miR-145-5p mimics, the miR-145 level drastically increases in SW480. The functional inhibition of gap junctions, using either a gap channel blocker or siRNA targeting Cx43, prevents this increase. The transfer of miR-145 also occurs from SW480 to HMEC but not in non-contact co-cultures, excluding the involvement of soluble exosomes. The miR-145 transfer to SW480 up-regulates their Cx43 expression and inhibits their ability to promote angiogenesis. Our results indicate that the gap junctional communication can inhibit tumor growth by transferring miRs from one endothelial cell to neighboring tumor cells. This "bystander" effect could find application in cancer therapy.


Assuntos
Comunicação Celular/fisiologia , Neoplasias do Colo/metabolismo , Células Endoteliais/metabolismo , Junções Comunicantes/metabolismo , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Neoplasias do Colo/patologia , Humanos , Neovascularização Patológica/patologia
10.
Oncotarget ; 6(30): 28800-15, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26320187

RESUMO

A gradual loss of functional gap junction between tumor cells has been reported with colorectal cancer (CRC) progression. Here, we explored if colon cancer cells could also affect gap junctions in blood capillary cells. Human microvascular endothelial cells (HMEC) were cultured with two CRC cell lines established from a unique patient. SW480 cells, derived from the primary tumor, migrate much faster across HMEC monolayer than SW620 cells derived from a metastatic site. The motile SW480 cells highly express and release HSP27 that increases gap junction formation with HMEC. Soluble HSP27 phosphorylates the connexin Cx43 on serine residues and induces its interaction with the oncoprotein 14-3-3, which promotes Cx43 delivery at the plasma membrane. The factors secreted by less motile SW620 cells do not affect Cx43 expression but up-regulate the expression of the connexin Cx32 through an activation of the chemokine receptor CXCR2. In turn, SW620 secreted factors induce tubulogenesis and ATP release. Altogether, cell lines derived from CRC primary tumor and metastasis differentially adapt endothelial cell functions by modulating connexin expression through released mediators.


Assuntos
Capilares/metabolismo , Neoplasias Colorretais/metabolismo , Conexinas/metabolismo , Células Endoteliais/metabolismo , Junções Comunicantes/metabolismo , Comunicação Parácrina , Proteínas 14-3-3/metabolismo , Trifosfato de Adenosina/metabolismo , Capilares/patologia , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Cocultura , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Conexina 43/metabolismo , Células Endoteliais/patologia , Junções Comunicantes/patologia , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Metástase Neoplásica , Neovascularização Fisiológica , Fosforilação , Interferência de RNA , Receptores de Interleucina-8B/metabolismo , Serina , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteína beta-1 de Junções Comunicantes
11.
Oncotarget ; 6(12): 10267-83, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25868858

RESUMO

High levels of circulating heat shock protein 70 (HSP70) are detected in many cancers. In order to explore the effects of extracellular HSP70 on human microvascular endothelial cells (HMEC), we initially used gap-FRAP technique. Extracellular human HSP70 (rhHSP70), but not rhHSP27, blocks the gap-junction intercellular communication (GJIC) between HMEC, disrupts the structural integrity of HMEC junction plaques, and decreases connexin43 (Cx43) expression, which correlates with the phosphorylation of Cx43 serine residues. Further exploration of these effects identified a rapid transactivation of the Epidermal Growth Factor Receptor in a Toll-Like Receptor 4-dependent manner, preceding its internalization. In turn, cytosolic Ca2+ oscillations are generated. Both GJIC blockade and Ca2+ mobilization partially depend on ATP release through Cx43 and pannexin (Panx-1) channels, as demonstrated by blocking activity or expression of channels, and inactivating extracellular ATP. By monitoring dye-spreading into adjacent cells, we show that HSP70 released from human monocytes in response to macrophage colony-stimulating factor, prevents the formation of GJIC between monocytes and HMEC. Therapeutic manipulation of this pathway could be of interest in inflammatory and tumor growth.


Assuntos
Células Endoteliais/metabolismo , Junções Comunicantes/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Conexina 43/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/sangue , Proteínas de Choque Térmico HSP70/farmacologia , Humanos , Fosforilação , Proteínas Recombinantes/farmacologia
12.
FASEB J ; 27(10): 4169-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23804239

RESUMO

The heat-shock protein 27 (HSP27) is up-regulated in tumor cells and released in their microenvironment. Here, we show that extracellular HSP27 has a proangiogenic effect evidenced on chick chorioallantoic membrane. To explore this effect, we test the recombinant human protein (rhHSP27) at physiopathological doses (0.1-10 µg/ml) onto human microvascular endothelial cells (HMECs) grown as monolayers or spheroids. When added onto HMECs, rhHSP27 dose-dependently accelerates cell migration (with a peak at 5 µg/ml) and favors spheroid sprouting within 12-24 h. rhHSP27 increases VEGF gene transcription and promotes secretion of VEGF-activating VEGF receptor type 2. Increased VEGF transcription is related to NF-κB activation in 30 min. All of these effects are initiated by rhHSP27 interaction with Toll-like receptor 3 (TLR3). Such an interaction can be detected by immunoprecipitation but does not seem to be direct, as we failed to detect an interaction between rhHSP27 and monomeric TLR3 by SPR analysis. rhHSP27 is rapidly internalized with a pool of TLR3 to the endosomal compartment (within 15-30 min), which is required for NF-κB activation in a cytosolic Ca(2+)-dependent manner. The HSP27/TLR3 interaction induces NF-κB activation, leading to VEGF-mediated cell migration and angiogenesis. Such a pathway provides alternative targets for antiangiogenic cancer therapy.


Assuntos
Células Endoteliais/efeitos dos fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Neovascularização Fisiológica/fisiologia , Receptor 3 Toll-Like/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP27/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 3 Toll-Like/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
J Biol Chem ; 286(5): 3418-28, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21127066

RESUMO

Extracellular heat shock protein HSP90α was reported to participate in tumor cell growth, invasion, and metastasis formation through poorly understood signaling pathways. Herein, we show that extracellular HSP90α favors cell migration of glioblastoma U87 cells. More specifically, externally applied HSP90α rapidly induced endocytosis of EGFR. This response was accompanied by a transient increase in cytosolic Ca(2+) appearing after 1-3 min of treatment. In the presence of EGF, U87 cells showed HSP90α-induced Ca(2+) oscillations, which were reduced by the ATP/ADPase, apyrase, and inhibited by the purinergic P(2) inhibitor, suramin, suggesting that ATP release is requested. Disruption of lipid rafts with methyl ß-cyclodextrin impaired the Ca(2+) rise induced by extracellular HSP90α combined with EGF. Specific inhibition of TLR4 expression by blocking antibodies suppressed extracellular HSP90α-induced Ca(2+) signaling and the associated cell migration. HSPs are known to bind lipopolysaccharides (LPSs). Preincubating cells with Polymyxin B, a potent LPS inhibitor, partially abrogated the effects of HSP90α without affecting Ca(2+) oscillations observed with EGF. Extracellular HSP90α induced EGFR phosphorylation at Tyr-1068, and this event was prevented by both the protein kinase Cδ inhibitor, rottlerin, and the c-Src inhibitor, PP2. Altogether, our results suggest that extracellular HSP90α transactivates EGFR/ErbB1 through TLR4 and a PKCδ/c-Src pathway, which induces ATP release and cytosolic Ca(2+) increase and finally favors cell migration. This mechanism could account for the deleterious effects of HSPs on high grade glioma when released into the tumor cell microenvironment.


Assuntos
Movimento Celular , Receptores ErbB/genética , Glioblastoma/patologia , Proteínas de Choque Térmico HSP90/fisiologia , Receptor 4 Toll-Like/metabolismo , Ativação Transcricional , Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Humanos , Microdomínios da Membrana , Proteína Quinase C-delta/metabolismo
14.
Am J Physiol Cell Physiol ; 296(2): C285-95, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19052260

RESUMO

The vectorial transport of ions and water across epithelial cells depends to a large extent on the coordination of the apical and basolateral ion fluxes with energy supply. In this work we provide the first evidence for a regulation by the 5'-AMP-activated protein kinase (AMPK) of the calcium-activated potassium channel KCa3.1 expressed at the basolateral membrane of a large variety of epithelial cells. Inside-out patch-clamp experiments performed on human embryonic kidney (HEK) cells stably transfected with KCa3.1 first revealed a decrease in KCa3.1 activity following the internal addition of AMP at a fixed ATP concentration. This effect was dose dependent with half inhibition at 140 muM AMP in 1 mM ATP. Evidence for an interaction between the COOH-terminal region of KCa3.1 and the gamma1-subunit of AMPK was next obtained by two-hybrid screening and pull-down experiments. Our two-hybrid analysis confirmed in addition that the amino acids extending from Asp(380) to Ala(400) in COOH-terminal were essential for the interaction AMPK-gamma1/KCa3.1. Inside-out experiments on cells coexpressing KCa3.1 with the dominant negative AMPK-gamma1-R299G mutant showed a reduced sensitivity of KCa3.1 to AMP, arguing for a functional link between KCa3.1 and the gamma1-subunit of AMPK. More importantly, coimmunoprecipitation experiments carried out on bronchial epithelial NuLi cells provided direct evidence for the formation of a KCa3.1/AMPK-gamma1 complex at endogenous AMPK and KCa3.1 expression levels. Finally, treating NuLi monolayers with the membrane permeant AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) caused a significant decrease of the KCa3.1-mediated short-circuit currents, an effect reversible by coincubation with the AMPK inhibitor Compound C. These observations argue for a regulation of KCa3.1 by AMPK in a functional epithelium through protein/protein interactions involving the gamma1-subunit of AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Epiteliais/enzimologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Ativação do Canal Iônico , Mucosa Respiratória/enzimologia , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Polaridade Celular , Células Cultivadas , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Células Epiteliais/efeitos dos fármacos , Humanos , Imunoprecipitação , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Ativação do Canal Iônico/efeitos dos fármacos , Transporte de Íons , Potenciais da Membrana , Mutação , Técnicas de Patch-Clamp , Ligação Proteica , Proteínas Recombinantes/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Transfecção , Técnicas do Sistema de Duplo-Híbrido
15.
Ann N Y Acad Sci ; 1030: 14-27, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15659776

RESUMO

Little is known concerning how the coordination of Ca(2+) signaling aids in capillary endothelial cell (CEC) functions, such as microvascular permeability and angiogenesis. Previous reports support the major involvement of gap junction (GJ) channels. However, the cell-to-cell communication may not be straightforward, especially if we consider the participation of active molecules released by CEC. In this study, short-term effects of vascular endothelial growth factor (VEGF-165) were compared with those of bradykinin (BK) on gap junction coupling (GJC) and remodeling of connexin-43 (Cx43) and then analyzed for intercellular Ca(2+) signal in primary cultures of coronary CEC. Dye-coupling experiments revealed that BK or VEGF completely blocked GJC. These effects correlated with the rapid internalization of Cx43 and its tyrosine phosphorylation in part via the phosphatidylinositol 3-kinase/Akt pathway. GJC slowly recovered with BK but not with VEGF in the following hour. In control conditions, mechanical stimulation of a single cell within a confluent monolayer triggered an intercellular Ca(2+) wave that was partially inhibited by GJC blockers or purinergic inhibitors. No wave propagation was observed after blockage of both GJC and purinergic receptors. Cell treatment with VEGF also reduced propagation of the Ca(2+) wave, which was totally prevented by applying a purinergic receptor antagonist but not with a GJC blocker. That excludes purine efflux through Cx hemichannels. We conclude that VEGF-induced disruption of GJC via Cx43 remodeling is relayed by an autocrine communication via secretion of ATP to preserve intercellular Ca(2+) signaling in capillary endothelium.


Assuntos
Trifosfato de Adenosina/metabolismo , Capilares/metabolismo , Comunicação Celular/fisiologia , Vasos Coronários/metabolismo , Junções Comunicantes/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Células Cultivadas , Vasos Coronários/citologia , Epitélio/metabolismo , Fosforilação , Ratos , Tirosina/metabolismo
16.
J Biol Chem ; 277(3): 2028-32, 2002 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-11711543

RESUMO

Bradykinin (BK) and vascular endothelial growth factor (VEGF)-165 stimulate vasodilatation, microvascular permeability, and angiogenesis via the activation of the B2-type and KDR/Flk-1 receptors. To delineate the signal transduction pathways distal to the receptor activation in microvascular permeability, we compared their effects on two downstream targets, i.e. endothelial nitric-oxide (NO) synthase (eNOS) and F-actin, in primary cultures of cardiac capillary endothelial cells. The two mediators induced a similar cytoskeletal reorganization and both the translocation and activation of eNOS, leading to NO release within the first minutes of cell exposure. At the same time, BK produced the tyrosine phosphorylation and internalization of KDR/Flk-1 as did VEGF itself. This transactivation was blocked by the selective inhibitor of VEGF receptor tyrosine kinase activity but not by inhibitors of epidermal growth factor receptor or protein kinase C activity. The selective inhibitor of VEGF receptor tyrosine kinase activity totally prevented the effects of VEGF but only partially inhibited NO release induced by BK without affecting the concomitant cytoskeletal reorganization. Thus, BK transactivated KDR/Flk-1 through an intrinsic kinase activity of KDR/Flk-1, resulting in a further eNOS activation in endothelial cells. This represents a novel mechanism whereby a G protein-coupled receptor activates a receptor tyrosine kinase to generate biological response.


Assuntos
Capilares/enzimologia , Vasos Coronários/enzimologia , Óxido Nítrico Sintase/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Receptores da Bradicinina/fisiologia , Ativação Transcricional/fisiologia , Animais , Células Cultivadas , Meios de Cultivo Condicionados , Ativação Enzimática , Óxido Nítrico Sintase Tipo III , Proteína Quinase C/metabolismo , Transporte Proteico , Ratos , Receptor B2 da Bradicinina , Receptor 1 de Fatores de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA