Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Infect Genet Evol ; 121: 105594, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636619

RESUMO

The prevalence of COVID-19 critical illness varies across ethnicities, with recent studies suggesting that genetic factors may contribute to this variation. The aim of this study was to investigate natural selection signals of genes associated with critically-ill COVID-19 in sub-Saharan Africans. Severe COVID-19 SNPs were obtained from the HGI website. Selection signals were assessed in 661 sub-Sahara Africans from 1000 Genomes Project using integrated haplotype score (iHS), cross-population extended haplotype homozygosity (XP-EHH), and fixation index (Fst). Allele frequency trajectory analysis of ancient DNA samples were used to validate the existing of selection in sub-Sahara Africans. We also used Mendelian randomization to decipher the correlation between natural selection and critically-ill COVID-19. We identified that CCR3 exhibited significant natural selection signals in sub-Sahara Africans. Within the CCR3 gene, rs17217831-A showed both high iHS (Standardized iHS = 2) and high XP-EHH (Standardized XP-EHH = 2.5) in sub-Sahara Africans. Allele frequency trajectory of CCR3 rs17217831-A revealed natural selection occurring in the recent 1,500 years. Natural selection resulted in increased CCR3 expression in sub-Sahara Africans. Mendelian Randomization provided evidence that increased blood CCR3 expression and eosinophil counts lowered the risk of critically ill COVID-19. Our findings suggest that sub-Saharan Africans are resistant to critically ill COVID-19 due to natural selection and identify CCR3 as a potential novel therapeutic target.

2.
JHEP Rep ; 5(7): 100744, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37235137

RESUMO

Background & Aims: Around 20% of patients with non-alcoholic fatty liver disease (NAFLD) are lean. Increasing evidence suggests that lean NAFLD is a unique subtype of the disease. We aimed to explore the metabolic profile, genetic basis, causal risk factors, and clinical sequelae underlying lean NAFLD. Methods: NAFLD was diagnosed by whole liver proton density fat fraction ≥5%. Whole liver proton density fat fraction and hepatic iron were quantified using magnetic resonance imaging in the UK Biobank. Individuals in this study were stratified according to the World Health Organization criteria of obesity, into lean, overweight, and obese. Mediation analysis, Mendelian randomisation analysis, and Bayesian networks were used to identify a risk factor or a clinical sequela of lean/obese NAFLD. Results: Lean NAFLD manifested a distinct metabolic profile, featured by elevated hepatic iron and fasting glucose. Four loci, namely, HFE rs1800562, SLC17A3-SLC17A2-TRIM38 rs9348697, PNPLA3 rs738409, and TM6SF2 rs58542926, were associated with lean NAFLD (p <5 × 10-8). HFE rs1800562 was specifically associated with lean NAFLD and demonstrated a significant mediation effect through elevating hepatic iron. Type 2 diabetes was the most pronounced clinical sequela of lean NAFLD, followed by liver cirrhosis. Conclusions: Our study suggested that HFE plays a potential steatogenic role rather than regulating iron homoeostasis in patients with lean NAFLD. The increased liver iron deposition is associated with lean NAFLD, whereas obese NAFLD is not related to hepatic iron. The clinical management of patients with lean NAFLD shall be concerned with the prevention and treatment of type 2 diabetes and liver cirrhosis. Impact and implications: Lean NAFLD has a distinct natural history from obese NAFLD. This study underscored liver iron content and the genetic variant of the iron homoeostasis gene HFE as major risks of lean NAFLD, in addition to the unique metabolic profile. The development of type 2 diabetes or liver cirrhosis shall be closely monitored and prevented in patients with lean NAFLD.

3.
Front Nutr ; 10: 1117626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824175

RESUMO

Background and Aims: Dietary fatty acid composition is associated with non-alcoholic fatty liver disease (NAFLD). Few evidence had identified a clear role of dietary fatty acid composition of typical diet in NAFLD. We aimed to investigate the relationship between dietary patterns and NAFLD in populations with typical diets and to explore the effect of fatty acid composition in dietary patterns on NAFLD. Methods: Principal component analysis was used to identify 4 dietary patterns in UK Biobank participants. Logistic regression was used to estimate the association between dietary patterns and NAFLD. Mediation analysis was performed to evaluate the extent to which the relationship between dietary patterns and NAFLD was explained by dietary fatty acid combinations, as surrogated by serum fatty acids measured by nuclear magnetic resonance. Results: A dietary fatty acid pattern (DFP1) characterized by "PUFA enriched vegetarian" was negatively associated with NAFLD risk. Serum fatty acids were significantly associated with DFP1 and NAFLD. Mediation analysis showed SFA (27.8%, p < 0.001), PUFA (25.1%, p < 0.001), ω-6 PUFA (14.3%, p < 0.001), LA (15.6%, p < 0.001) and DHA (10%, p < 0.001) had a significant indirect effect on the association between DFP1 and NAFLD. A dietary pattern characterized by "PUFA enriched carnivore" (DFP2) was not associated with NAFLD risk. Conclusion: A "PUFA enriched vegetarian" dietary pattern with increased LA and DHA, may be beneficial for the treatment or prevention of NAFLD, while a "PUFA enriched carnivore" dietary pattern may not be harmful to NAFLD.

4.
Clin Transl Gastroenterol ; 13(5): e00480, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35347089

RESUMO

INTRODUCTION: Previous observational studies have found that the susceptibility of coronavirus disease 2019 (COVID-19) and the risk of severe COVID-19 are not increased in patients with celiac disease (CeD). However, the findings of observational studies are prone to bias due to reverse causation and confounding factors, especially in the case of a newly emerged disease. In this study, we aimed to further clarify the underlying relationship by both observational and Mendelian randomization (MR) analysis. METHODS: This observational study was conducted in the UK Biobank cohort. Univariate and multivariate logistic regression analyses were performed to identify the risk factors of COVID-19 susceptibility and severe COVID-19. To understand the causality between CeD and COVID-19 susceptibility and severe COVID-19, we performed a 2-sample MR analysis. RESULTS: Our observational study showed that patients with CeD had a lower susceptibility of COVID-19 (odds ratio [OR] = 0.699, P = 0.006) while CeD was not significantly associated with severe COVID-19 (P > 0.05). The findings from our MR study further demonstrated that both the susceptibility to COVID-19 (OR = 0.963, P = 0.006) and severe COVID-19 (OR = 0.919, P = 0.049) were lower in patients with CeD, although the former seemed to be specific to the UK Biobank cohort. DISCUSSION: Our results suggested that it may be unnecessary to take extra COVID-19 precaution in patients with CeD.


Assuntos
COVID-19 , Doença Celíaca , COVID-19/epidemiologia , Causalidade , Doença Celíaca/complicações , Doença Celíaca/epidemiologia , Doença Celíaca/genética , Humanos , Análise da Randomização Mendeliana , Fatores de Risco
5.
Clin Gastroenterol Hepatol ; 20(7): 1553-1560.e78, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35124268

RESUMO

BACKGROUND & AIMS: The coronavirus disease 2019 (COVID-19) pandemic has witnessed more than 4.5 million deaths as of the time of writing. Whether nonalcoholic fatty liver disease (NAFLD) increases the risk for severe COVID-19 remains unclear. We sought to address this question using 2-sample Mendelian randomization (TSMR) analysis approaches in large cohorts. METHODS: We performed large-scale TSMR analyses to examine whether there is a causal relationship between NAFLD, serum alanine aminotransferase, grade of steatosis, NAFLD Activity Score, or fibrosis stage and severe COVID-19. To maximize the power of this analysis, we performed a genome-wide meta-analysis to identify single nucleotide polymorphisms associated with NAFLD. We also examined the impact of 20 major comorbid factors of NAFLD on severe COVID-19. RESULTS: Univariate analysis of the UK Biobank data demonstrated a significant association between NAFLD and severe COVID-19 (odds ratio [OR], 3.06; P = 1.07 × 10-6). However, this association disappeared after demographic and comorbid factors were adjusted (OR, 1.57; P = .09). TSMR study indicated that NAFLD (OR, 0.97; P = .61), alanine aminotransferase level (OR, 1.03; P = .47), grade of steatosis (OR, 1.08; P = .41), NAFLD Activity Score (OR, 1.02; P = .39), and fibrosis stage (OR, 1.01; P = .87) were not associated with severe COVID-19. Among all NAFLD-related comorbid factors, body mass index (OR, 1.73; P = 7.65 × 10-9), waist circumference (OR, 1.76; P = 2.58 × 10-5), and hip circumference (OR, 1.33; P = 7.26 × 10-3) were the only ones demonstrated a causal impact on severe COVID-19. CONCLUSIONS: There is no evidence supporting that NAFLD is a causal risk factor for severe COVID-19. Previous observational associations between NAFLD and COVID-19 are likely attributed to the correlation between NAFLD and obesity.


Assuntos
COVID-19 , Hepatopatia Gordurosa não Alcoólica , Alanina Transaminase , Índice de Massa Corporal , COVID-19/complicações , Fibrose , Humanos , Análise da Randomização Mendeliana , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética
6.
Neuroimage Clin ; 33: 102870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34872017

RESUMO

OBJECTIVE: To determine whether there is a correlation between obesity-related variants and regional brain volumes. METHODS: Based on a mixed linear model (MLM), we analyzed the association between 1,498 obesity-related SNPs in the GWAS Catalog and 164 regional brain volumes from 29,420 participants (discovery cohort N = 19,997, validation cohort N = 9,423) in UK Biobank. The statistically significant brain regions in association analysis were classified into 6 major neural networks (dopamine (DA) motive system, central autonomic network (CAN), cognitive emotion regulation, visual object recognition network, auditory object recognition network, and sensorimotor system). We summarized the association between obesity-related variants (metabolically healthy obesity variants, metabolically unhealthy obesity variants, and unclassified obesity-related variants) and neural networks. RESULTS: From association analysis, we determined that 17 obesity-related SNPs were associated with 51 regional brain volumes. Several single SNPs (e.g., rs13107325-T (SLC39A8), rs1876829-C (CRHR1), and rs1538170-T (CENPW)) were associated with multiple regional brain volumes. In addition, several single brain regions (e.g., the white matter, the grey matter in the putamen, subcallosal cortex, and insular cortex) were associated with multiple obesity-related variants. The metabolically healthy obesity variants were mainly associated with the regional brain volumes in the DA motive system, sensorimotor system and cognitive emotion regulation neural networks, while metabolically unhealthy obesity variants were mainly associated with regional brain volumes in the CAN and total tissue volumes. In addition, unclassified obesity-related variants were mainly associated with auditory object recognition network and total tissue volumes. The results of MeSH (medical subject headings) enrichment analysis showed that obesity genes associated with brain structure pointed to the functional relatedness with 5-Hydroxytryptamine receptor 4 (5-HT4), growth differentiation factor 5 (GDF5), and high mobility group protein AT-hook 2 (HMGA2 protein). CONCLUSION: In summary, we found that obesity-related variants were associated with different brain volume measures. On the basis of the multiple SNPs, we found that metabolically healthy and unhealthy obesity-related SNPs were associated with different brain neural networks. Based on our enrichment analysis, modifications of the 5-HT4 pathway might be a promising therapeutic strategy for obesity.


Assuntos
Bancos de Espécimes Biológicos , Obesidade , Substância Branca , Encéfalo/diagnóstico por imagem , Humanos , Obesidade/diagnóstico por imagem , Obesidade/genética , Tamanho do Órgão , Reino Unido , Substância Branca/diagnóstico por imagem
7.
Mol Brain ; 13(1): 35, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32151269

RESUMO

Calstabin2, also named FK506 binding protein 12.6 (FKBP12.6), is a subunit of ryanodine receptor subtype 2 (RyR2) macromolecular complex, an intracellular calcium channel. Studies from our and other's lab have shown that hippocampal calstabin2 regulates spatial memory. Calstabin2 and RyR2 are widely distributed in the brain, including the amygdala, a key brain area involved in the regulation of emotion including fear. Little is known about the role of calstabin2 in fear memory. Here, we found that genetic deletion of calstabin2 impaired long-term memory in cued fear conditioning test. Knockdown calstabin2 in the lateral amygdala (LA) by viral vector also impaired long-term cued fear memory expression. Furthermore, calstabin2 knockout reduced long-term potentiation (LTP) at both cortical and thalamic inputs to the LA. In conclusion, our present data indicate that calstabin2 in the LA plays a crucial role in the regulating of emotional memory.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Memória/fisiologia , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Sinais (Psicologia) , Potenciação de Longa Duração , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Tacrolimo/deficiência
8.
Neurobiol Learn Mem ; 162: 9-14, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31047997

RESUMO

Nociceptin/Orphanin FQ (N/OFQ) plays an important role in the regulation of spatial, fear and recognition memories. N/OFQ receptors are highly distributed in the perirhinal cortex, which is a key brain area involved in modulating novel object recognition (NOR) memory. However, the role of N/OFQ in NOR memory in the perirhinal cortex was still unknown. Moreover, the effects of N/OFQ on different stages of NOR memory were still unclear. In NOR task, we found that pre-training intracerebroventricular (icv) injection of N/OFQ (0.3 and 1 nmol) impaired long-term memory in a dose-dependent manner. However, icv infusion of N/OFQ immediately after training did not affect NOR memory consolidation even at a high dose of 3 nmol. Pre-test icv injection of N/OFQ (1 nmol) also did not influence NOR memory retrieval. These data indicate that N/OFQ negatively modulates long-term NOR memory during the acquisition phase. Furthermore, the amnesia effect of N/OFQ (1 nmol, icv) could be antagonist by pre-treatment with the selective N/OFQ receptor antagonist [Nphe1]N/OFQ(1-13)NH2 (10 nmol, icv), indicating pharmacological specificity. Then, we found that pre-training infusion of N/OFQ (0.1 and 0.3 nmol/side) into the bilateral perirhinal cortex impaired long-term NOR memory, suggesting the perirhinal cortex is a critical brain structure in mediating the amnesic effect of N/OFQ in NOR task. In conclusion, our data, for the first time, indicate that N/OFQ in the perirhinal cortex impairs NOR memory acquisition through the NOP receptors.


Assuntos
Memória de Longo Prazo/efeitos dos fármacos , Peptídeos Opioides/farmacologia , Córtex Perirrinal/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Injeções Intraventriculares , Masculino , Camundongos , Somatostatina/análogos & derivados , Somatostatina/farmacologia , Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA