Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 782
Filtrar
1.
Angew Chem Int Ed Engl ; : e202406708, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828797

RESUMO

Covalent adaptable networks (CANs), leveraging the dynamic exchange of covalent bonds, emerge as a promising material to address the challenge of irreversible cross-linking in thermosetting polymers. In this work, we explore the introduction of a catalyst-free and associative C=C/C=N metathesis reaction into thermosetting polyurethanes, creating CANs with superior stability, solvent resistance, and thermal/mechanical properties. By incorporating this dynamic exchange reaction, stress-relaxation is significantly accelerated compared to imine-bond-only networks, with the rate adjustable by modifying substituents in the ortho position of the dynamic double bonds. The obtained plasticity enables recycle without altering the chemical structure or mechanical properties, and is also found to be vital for achieving shape memory functions with complex spatial structures. This metathesis reaction as a new dynamic crosslinker of polymer networks has the potential to accelerate the ongoing exploration of malleable and functional thermoset polymers.

2.
Carbohydr Polym ; 339: 122250, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823917

RESUMO

Glycyrrhizae Radix et rhizome/licorice is a precious herb in traditional Chinese medicine (TCM). TCM's polysaccharides are medicinally active. But herbal polysaccharides pose some limitations for topical applications. Therefore, this study aimed to utilize licorice polysaccharide via mesoporous silica nanoparticles (MSN) for anti-acne efficacy in topical delivery. The polysaccharide (GGP) was extracted with a 10 % NaOH solution. Chemical characterization suggested that GGP possesses an Mw of 267.9 kDa, comprised primarily of Glc (54.1 %) and Ara (19.12 %), and probably 1,4-linked Glc as a backbone. Then, MSN and amino-functionalized MSN were synthesized, GGP entrapped, and coated with polydopamine (PDA) to produce nanoparticle cargo. The resulted product exhibited 76 % entrapment efficiency and an in vitro release of 89 % at pH 5, which is usually an acne-prone skin's pH. Moreover, it significantly increased Sebocytes' cellular uptake. GGP effectively acted as an anti-acne agent and preserved its efficacy in synthesized nanoparticles. In vivo, the results showed that a 20 % gel of MSN-NH2-GGP@PDA could mediate an inflammatory response via inhibiting pro-inflammatory cytokines and regulating anti-inflammatory cytokines. The MSN-NH2-GGP@PDA inhibited TLR2-activated-MAPK and NF-κB pathway triggered by heat-killed P. acnes. In conclusion, fabricated MSN entrapped GGP for biomimetic anti-acne efficacy in topical application.


Assuntos
Acne Vulgar , Glycyrrhiza , Nanopartículas , Polissacarídeos , Dióxido de Silício , Glycyrrhiza/química , Dióxido de Silício/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Nanopartículas/química , Animais , Porosidade , Acne Vulgar/tratamento farmacológico , Camundongos , Administração Tópica , Humanos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Indóis , Polímeros
3.
Nat Commun ; 15(1): 3855, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719820

RESUMO

Converting elementary sulfur into sulfur-rich polymers provides a sustainable strategy to replace fossil-fuel-based plastics. However, the low ring strain of eight-membered rings, i.e., S8 monomers, compromises their ring-opening polymerization (ROP) due to lack of an enthalpic driving force and as a consequence, poly(sulfur) is inherently unstable. Here we report that copolymerization with cyclic disulfides, e.g., 1,2-dithiolanes, can enable a simple and energy-saving way to convert elementary sulfur into sulfur-rich thermoplastics. The key strategy is to combine two types of ROP-both mediated by disulfide bond exchange-to tackle the thermodynamic instability of poly(sulfur). Meanwhile, the readily modifiable sidechain of the cyclic disulfides provides chemical space to engineer the mechanical properties and dynamic functions over a large range, e.g., self-repairing ability and degradability. Thus, this simple and robust system is expected to be a starting point for the organic transformation of inorganic sulfur toward sulfur-rich functional and green plastics.

5.
J Nanobiotechnology ; 22(1): 270, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769551

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease of yet undetermined etiology that is accompanied by significant oxidative stress, inflammatory responses,  and damage to joint tissues. In this study, we designed chondroitin sulfate (CS)-modified tragacanth gum-gelatin composite nanocapsules (CS-Cur-TGNCs) loaded with curcumin nanocrystals (Cur-NCs), which rely on the ability of CS to target CD44 to accumulate drugs in inflamed joints. Cur was encapsulated in the form of nanocrystals into tragacanth gum-gelatin composite nanocapsules (TGNCs) by using an inborn microcrystallization method, which produced CS-Cur-TGNCs with a particle size of approximately 80 ± 11.54 nm and a drug loading capacity of 54.18 ± 5.17%. In an in vitro drug release assay, CS-Cur-TGNCs showed MMP-2-responsive properties. During the treatment of RA, CS-Cur-TGNCs significantly inhibited oxidative stress, promoted the polarization of M2-type macrophages to M1-type macrophages, and decreased the expression of inflammatory factors (TNF-α, IL-1ß, and IL-6). In addition, it also exerted excellent anti-inflammatory effects, and significantly alleviated the swelling of joints during the treatment of gouty arthritis (GA). Therefore, CS-Cur-TGNCs, as a novel drug delivery system, could lead to new ideas for clinical therapeutic regimens for RA and GA.


Assuntos
Sulfatos de Condroitina , Curcumina , Gelatina , Nanocápsulas , Nanopartículas , Tragacanto , Curcumina/farmacologia , Curcumina/química , Sulfatos de Condroitina/química , Gelatina/química , Animais , Nanocápsulas/química , Nanopartículas/química , Camundongos , Tragacanto/química , Células RAW 264.7 , Estresse Oxidativo/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Masculino , Tamanho da Partícula , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Liberação Controlada de Fármacos , Ratos
6.
Angew Chem Int Ed Engl ; : e202407385, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736176

RESUMO

Circularly polarized luminescence (CPL) is promising for applications in many fields. However, most systems involving CPL are within the visible range; near‒infrared (NIR) CPL‒active materials, especially those that exhibit high glum values and can be controlled spatially and temporally, are rare. Herein, dynamic NIR‒CPL with a glum value of 2.5[[EQUATION]]10‒2 was achieved through supramolecular coassembly and energy transfer strategies. The chiral assemblies formed by the coassembly between adenosine triphosphate (ATP) and a pyrene derivative exhibit a red CPL signal (glum of 10‒3). The further introduction of sulfo‒cyanine5 resulted in a cooperative energy transfer process, which not only aroused the NIR CPL but also increased the glum value to 10‒2. Temporal control of these chiral assemblies was realized by introducing alkaline phosphatase to fabricate a biomimetic enzyme‒catalyzed network, allowing the dynamic NIR CPL signal to be turned on. Based on these enzyme-regulated temporally controllable dynamic CPL-active chiral assemblies, a multilevel information encryption system was further developed. Our work provides a pioneering example for constructing dynamic NIR CPL materials holding the ability to perform temporal control via the supramolecular assembly strategy, which is expected to aid in the design of supramolecular complex systems that more closely resemble natural biological systems.

7.
Chembiochem ; : e202400361, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767267

RESUMO

RNA modifications play crucial roles in regulating gene expression and cellular homeostasis.  Modulating RNA modifications, particularly by targeting the enzymes responsible for their catalysis, has emerged as a promising therapeutic strategy.  However, limitations, such as the lack of identified modifying enzymes and compensatory mechanisms, hinder targeted interventions.  Chemical approaches independent of enzymatic activity offer an alternative strategy for RNA modification modulation.  Here, we present the identification of 2-chloro-3,5-dinitrobenzoic acid as a highly effective photochemical deprenylase of i6A RNA.  This method demonstrates exceptional selectivity towards i6A, converting its substituent into a "N-doped" ozonide, which upon hydrolysis releases natural adenine.  We believe that this chemical approach will pave the way for a better understanding of RNA modification biology and the development of novel therapeutic modalities.

8.
Adv Mater ; : e2403880, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723049

RESUMO

Classic approaches to integrate flexible capacitive sensor performance are to on-demand microstructuring dielectric layers and to adjust dielectric material compositions via the introduction of insoluble carbon additives (to increase sensitivity) or dynamic interactions (to achieve self-healing). However, the sensor's enhanced performances often come with increased material complexity, discouraging its circular economy. Herein, a new intrinsic self-healable, closed-loop recyclable dielectric layer material, a fully nature-derived dynamic covalent poly(disulfide) decorated with rich H bonding and metal-catechol complexations is introduced. The polymer network possesses a mechanically ductile character with an Arrhenius-type temperature-dependent viscoelasticity. The assembled capacitive pressure sensor is able to achieve a sensitivity of up to 9.26 kPa-1, fast response/recovery time of 32/24 ms, and can deliver consistent signals of continuous consecutive cycles even after being self-healed or closed-loop recycled for real-time detection of human motions. This is expected to be of high interest for current capacitive sensing research to move toward a life-like, high performance, and circular economy direction.

9.
Nature ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811739

RESUMO

The increasing demands for more efficient and brighter thin-film light-emitting diodes (LEDs) in flat-panel display and solid-state lighting applications have promoted research into three-dimensional (3D) perovskites. These materials exhibit high charge mobilities and low quantum efficiency droop1-6, making them promising candidates for achieving efficient LEDs with enhanced brightness. To improve the efficiency of LEDs, it is crucial to minimize nonradiative recombination while promoting radiative recombination. Various passivation strategies have been used to reduce defect densities in 3D perovskite films, approaching levels close to those of single crystals3. However, the slow radiative (bimolecular) recombination has limited the photoluminescence quantum efficiencies (PLQEs) of 3D perovskites to less than 80% (refs. 1,3), resulting in external quantum efficiencies (EQEs) of LED devices of less than 25%. Here we present a dual-additive crystallization method that enables the formation of highly efficient 3D perovskites, achieving an exceptional PLQE of 96%. This approach promotes the formation of tetragonal FAPbI3 perovskite, known for its high exciton binding energy, which effectively accelerates the radiative recombination. As a result, we achieve perovskite LEDs with a record peak EQE of 32.0%, with the efficiency remaining greater than 30.0% even at a high current density of 100 mA cm-2. These findings provide valuable insights for advancing the development of high-efficiency and high-brightness perovskite LEDs.

10.
JACS Au ; 4(5): 1954-1965, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818060

RESUMO

Materials with stimuli-responsive purely organic room-temperature phosphorescence (RTP) exempt from exquisite molecular design and complex preparation are highly desirable but still relatively rare. Moreover, most of them work in a single switching mode. Herein, we employ a versatile host-guest-doped strategy to facilely construct efficient RTP systems with multimode stimuli-responsiveness without ingenious molecular design. By conveniently doping butterfly-like guests, namely, N,N'-diphenyl-dihydrodibenzo[a,c]phenazines (DPACs), featured with vibration-induced emission into the small-molecular hosts via various methods, RTP systems with finely tunable photophysical properties are readily obtained. Through systematic mechanistic studies and with the aid of a series of control experiments, we unveil the critical role of the host crystallinity in achieving efficient RTP. By virtue of the inherent environmental sensitivity of both RTP and fluorescence of the DPACs, our systems exhibit multiple-stimuli-responsiveness with the luminescence not only switching between the fluorescence and phosphorescence but also continuously changing in the fluorescence color. Advanced dynamic anticounterfeiting and multilevel information encryption is thereby realized.

11.
Mol Neurobiol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662299

RESUMO

Numerous neurological disorders share a fatal pathologic process known as glutamate excitotoxicity. Among which, ischemic stroke is the major cause of mortality and disability worldwide. For a long time, the main idea of developing anti-excitotoxic neuroprotective agents was to block glutamate receptors. Despite this, there has been little successful clinical translation to date. After decades of "neuron-centered" views, a growing number of studies have recently revealed the importance of non-neuronal cells. Glial cells, cerebral microvascular endothelial cells, blood cells, and so forth are extensively engaged in glutamate synthesis, release, reuptake, and metabolism. They also express functional glutamate receptors and can listen and respond for fast synaptic transmission. This broadens the thoughts of developing excitotoxicity antagonists. In this review, the critical contribution of non-neuronal cells in glutamate excitotoxicity during ischemic stroke will be emphasized in detail, and the latest research progress as well as corresponding therapeutic strategies will be updated at length, aiming to reconceptualize glutamate excitotoxicity in a non-neuronal perspective.

12.
Food Chem ; 449: 139197, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581788

RESUMO

Abalone (Haliotis spp.) is a shellfish known for its exceptional nutritional value and significant economic worth. This study investigated the dynamic characteristics of non-volatile compounds over a year, including metabolites, lipids, nucleotides, and free amino acids (FAAs), which determined the nutritional quality and flavor of abalone. 174 metabolites and 371 lipids were identified and characterized, while 20 FAAs and 11 nucleotides were quantitatively assessed. These non-volatile compounds of abalone were fluctuated with months variation, which was consistent with the fluctuations of environmental factors, especially seawater temperature. Compared with seasonal variation, gender had less influence on these non-volatiles. June and July proved to be the optimal harvesting periods for abalone, with the levels of overall metabolites, lipids, FAAs, and nucleotides in abalone exhibiting a higher value in June and July over a year. Intriguingly, taurine covered 60% of the total FAAs and abalone could be used as dietary taurine supplementation.


Assuntos
Aminoácidos , Gastrópodes , Metabolômica , Estações do Ano , Frutos do Mar , Animais , Gastrópodes/química , Gastrópodes/metabolismo , Frutos do Mar/análise , Aminoácidos/metabolismo , Aminoácidos/análise , Aminoácidos/química , Lipídeos/química , Valor Nutritivo , Masculino , Feminino
13.
Front Microbiol ; 15: 1372078, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605705

RESUMO

Introduction: An unprecedented surge of Omicron infections appeared nationwide in China in December 2022 after the adjustment of the COVID-19 response policy. Here, we report the clinical and genomic characteristics of SARS-CoV-2 infections among children in Shanghai during this outbreak. Methods: A total of 64 children with symptomatic COVID-19 were enrolled. SARS-CoV-2 whole genome sequences were obtained using next-generation sequencing (NGS) technology. Patient demographics and clinical characteristics were compared between variants. Phylogenetic tree, mutation spectrum, and the impact of unique mutations on SARS-CoV-2 proteins were analysed in silico. Results: The genomic monitoring revealed that the emerging BA.5.2.48 and BF.7.14 were the dominant variants. The BA.5.2.48 infections were more frequently observed to experience vomiting/diarrhea and less frequently present cough compared to the BF.7.14 infections among patients without comorbidities in the study. The high-frequency unique non-synonymous mutations were present in BA.5.2.48 (N:Q241K) and BF.7.14 (nsp2:V94L, nsp12:L247F, S:C1243F, ORF7a:H47Y) with respect to their parental lineages. Of these mutations, S:C1243F, nsp12:L247F, and ORF7a:H47Y protein were predicted to have a deleterious effect on the protein function. Besides, nsp2:V94L and nsp12:L247F were predicted to destabilize the proteins. Discussion: Further in vitro to in vivo studies are needed to verify the role of these specific mutations in viral fitness. In addition, continuous genomic monitoring and clinical manifestation assessments of the emerging variants will still be crucial for the effective responses to the ongoing COVID-19 pandemic.

14.
Small ; : e2400240, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593333

RESUMO

In this work, Pt3Fe nanoparticles (Pt3Fe NPs) with the ordered internal structure and Pt-rich shells surrounded by plenty of Fe single atoms (Fe SAs) as active species (Pt3Fe NP-in-Fe SA) loaded in the carbon materials are successfully fabricated, which are abbreviated as island-in-sea structured (IISS) Pt3Fe NP-in-Fe SA catalysts. Moreover, the synergistic effect of O-bridging between Pt3Fe NPs and Fe SAs, and the ordered internal structured Pt3Fe NPs with Pt-rich shells of an optimal thickness contributes to the achievement of the local acidic environments on the surfaces of Pt3Fe NPs in the alkaline hydrogen evolution reaction (HER) and the enhancement of the desorption rate of *OH intermediate in the acidic oxygen reduction reaction (ORR). In addition, the electronic interactions between Pt3Fe NPs and dispersed Fe SAs cannot only provide efficient electrons transfer, but also prevent the aggregation and dissolution of Pt3Fe NPs. Furthermore, the overpotential and the half wave potential of the as-prepared IISS Pt3Fe NP-in-Fe SA catalysts toward the alkaline HER and toward the acidic ORR are 8 mV at a current density of 10 mA cm-2 and 0.933 V, respectively, which is 29 lower and 86 mV higher than those (37 mV and 0.847 V) of commercial Pt/C catalysts.

15.
Cell Mol Neurobiol ; 44(1): 39, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649645

RESUMO

Spinal-cord injury (SCI) is a severe condition that can lead to limb paralysis and motor dysfunction, and its pathogenesis is not fully understood. The objective of this study was to characterize the differential gene expression and molecular mechanisms in the spinal cord of mice three days after spinal cord injury. By analyzing RNA sequencing data, we identified differentially expressed genes and discovered that the immune system and various metabolic processes play crucial roles in SCI. Additionally, we identified UHRF1 as a key gene that plays a significant role in SCI and found that SCI can be improved by suppressing UHRF1. These findings provide important insights into the molecular mechanisms of SCI and identify potential therapeutic targets that could greatly contribute to the development of new treatment strategies for SCI.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Traumatismos da Medula Espinal , Ubiquitina-Proteína Ligases , Animais , Traumatismos da Medula Espinal/fisiopatologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Camundongos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Atividade Motora/fisiologia , Camundongos Endogâmicos C57BL , Recuperação de Função Fisiológica/fisiologia , Feminino , Medula Espinal/metabolismo , Medula Espinal/patologia , Regulação da Expressão Gênica
16.
Artigo em Inglês | MEDLINE | ID: mdl-38683903

RESUMO

Graphene is a promising material for thermoacoustic sources due to its extremely low heat capacity per unit area and high thermal conductivity. However, current graphene thermoacoustic devices have limited device area and relatively high cost, which limit their applications of daily use. Here, we adopt a dip-coating method to fabricate a large-scale and cost-effective graphene sound source. This sound source has the three-dimensional (3D) porous structure that can increase the contact area between graphene and air, thus assisting heat to release into the air. In this method, polyurethane (PU) is used as a support, and graphene nanoplates are attached onto the PU skeleton so that a highly flexible graphene foam (GrF) device is obtained. At a measuring distance of 1 mm, it can emit sound at up to 70 dB under the normalized input power of 1 W. Considering its unique porous structure, we establish a thermoacoustic analysis model to simulate the acoustic performance of GrF. Furthermore, the obtained GrF can be made up to 44 in. (100 cm × 50 cm) in size, and it has good flexibility and processability, which broadens the application fields of GrF loudspeakers. It can be attached to the surfaces of objects with different shapes, making it suitable to be used as a large-area speaker in automobiles, houses, and other application scenarios, such as neck mounted speaker. In addition, it can also be widely used as a fully flexible in-ear earphone.

17.
Food Chem ; 447: 138949, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484544

RESUMO

Abalone, a highly sought-after aquatic product, possesses significant nutritional value. In this study, the relationship between aroma characteristics and lipid profile of abalone (Haliotis discus hannai) during seasonal fluctuation and thermal processing were profiled via volatolomics and lipidomics. 46 aroma compounds and 371 lipids were identified by HS-SPME-GC-MS and UPLC-Q-Extractive Orbitrap-MS, respectively. Multivariate statistical analysis indicated that carbonyls (aldehydes and ketones) and alcohols were the characteristic aroma compounds of abalone. The fluctuations in the aroma compound and lipid composition of abalone were consistent with the seasonal variation, especially seawater temperature. In addition, based on the correlation analysis, it was found that carbonyls (aldehydes and ketones) and alcohols had a positive correlation with phospholipids (lysophosphatidylethanolamines and lysophosphatidylcholines), while a negative correlation was observed with fatty acyls. These findings suggested that the effect of seasonal variations on the aroma changes of abalone might achieved by modulating the lipids composition of abalone.


Assuntos
Gastrópodes , Odorantes , Animais , Estações do Ano , Fosfolipídeos , Aldeídos , Cetonas
18.
Signal Transduct Target Ther ; 9(1): 61, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514615

RESUMO

Transforming growth factor (TGF)-ß is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-ß can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-ß can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-ß signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-ß signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-ß and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-ß signaling in physiological conditions as well as in pathological processes. TGF-ß-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-ß signaling and to attract more attention and interest to this research area.


Assuntos
Transdução de Sinais , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Citocinas
20.
ACS Appl Mater Interfaces ; 16(12): 15426-15434, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497376

RESUMO

High-conducting single-molecule junctions have attracted a great deal of attention, but insulating single-molecule junctions, which are critical in molecular circuits, have been less investigated due to the long-standing challenges. Herein, the in situ formation of a Au-C linker via electrical-potential-mediated sp2 C-H bond metalation of polyfluoroarenes with the assistance of scanning tunneling microscope-based break junction technique is reported. This metalation process is bias-dependent and occurs with an electropositive electrode, and the formed junction is highly oriented. Surprisingly, these polyfluoroarenes exhibit unexpected low conductance even under short molecular lengths and are superior molecular insulators. Flicker noise analysis and DFT calculations confirm that the insulating properties of polyfluoroarenes are ascribed to their multiple fluorine substituents. Our results pave a way for constructing oriented asymmetric molecular junctions and provide an efficient strategy to suppress the single-molecule conductance, which will aid in the design of molecular insulators and advance the development of self-integrating functional molecular circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA