Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2403228, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022846

RESUMO

This study investigates the impact of In- and S-vacancy concentrations on the photocatalytic activity of non-centrosymmetric zinc indium sulfide (ZIS) nanosheets for the hydrogen evolution reaction (HER). A positive correlation between the concentrations of dual In and S vacancies and the photocatalytic HER rate over ZIS nanosheets is observed. The piezoelectric polarization, stimulated by low-frequency vortex vibration to ensure the well-dispersion of ZIS nanosheets in solution, plays a crucial role in enhancing photocatalytic HER over the dual-vacancy engineered ZIS nanosheets. The piezoelectric characteristic of the defective ZIS nanosheets is confirmed through the piezopotential response measured using piezoelectric force microscopy. Piezophotocatalytic H2 evolution over the ZIS nanosheets is boosted under accelerated vortex vibrations. The research explores how vacancies alter ZIS's dipole moment and piezoelectric properties, thereby increasing electric potential gradient and improving charge-separation efficiency, through multi-scale simulations, including Density Functional Theory and Finite Element Analysis, and a machine-learning interatomic potential for defect identification. Increased In and S vacancies lead to higher electric potential gradients in ZIS along [100] and [010] directions, attributing to dipole moment and the piezoelectric effect. This research provides a comprehensive exploration of vacancy engineering in ZIS nanosheets, leveraging the piezopotential and dipole field to enhance photocatalytic performances.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38994719

RESUMO

Corrosion protection technology plays a crucial role in preserving infrastructure, ensuring safety and reliability, and promoting long-term sustainability. In this study, we combined experiments and various analyses to investigate the mechanism of corrosion occurring on the epoxy-based anticorrosive coating containing the additive of two-dimensional (2D) and water-stable zirconium-based metal-organic frameworks (Zr-MOFs). By using benzoic acid as the modulator for the growth of the MOF, a 2D MOF constructed from hexazirconium clusters and BTB linkers (BTB = 1,3,5-tri(4-carboxyphenyl)benzene) with coordinated benzoate (BA-ZrBTB) can be synthesized. By coating the BA-ZrBTB/epoxy composite film (BA-ZrBTB/EP) on the surface of cold-rolled steel (CRS), we found the lowest coating roughness (RMS) of BA-ZrBTB/EP is 2.83 nm with the highest water contact angle as 99.8°, which represents the hydrophobic coating surface. Notably, the corrosion rate of the BA-ZrBTB/EP coating is 2.28 × 10-3 mpy, which is 4 orders of magnitude lower than that of the CRS substrate. Moreover, the energy barrier for oxygen diffusion through BA-ZrBTB/EP coating is larger than that for epoxy coating (EP), indicating improved oxygen resistance for adding 2D Zr-MOFs as the additive. These results underscore the high efficiency and potential of BA-ZrBTB as a highly promising agent for corrosion prevention in various commercial applications. Furthermore, this study represents the first instance of applying 2D Zr-MOF materials in anticorrosion applications, opening up new possibilities for advanced corrosion-resistant coatings.

3.
Adv Mater ; : e2404120, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727702

RESUMO

This study innovatively addresses challenges in enhancing upconversion efficiency in lanthanide-based nanoparticles (UCNPs) by exploiting Shewanella oneidensis MR-1, a microorganism capable of extracellular electron transfer. Electroactive membranes, rich in c-type cytochromes, are extracted from bacteria and integrated into membrane-integrated liposomes (MILs), encapsulating core-shelled UCNPs with an optically inactive shell, forming UCNP@MIL constructs. The electroactive membrane, tailored to donate electrons through the inert shell, independently boosts upconversion emission under near-infrared excitation (980 or 1550 nm), bypassing ligand-sensitized UCNPs. The optically inactive shell restricts energy migration, emphasizing electroactive membrane electron donation. Density functional theory calculations elucidate efficient electron transfer due to the electroactive membrane hemes' highest occupied molecular orbital being higher than the valence band maximum of the optically inactive shell, crucial for enhancing energy transfer to emitter ions. The introduction of a SiO2 insulator coating diminishes light enhancement, underscoring the importance of unimpeded electron transfer. Luminescence enhancement remains resilient to variations in emitter or sensitizing ions, highlighting the robustness of the electron transfer-induced phenomenon. However, altering the inert shell material diminishes enhancement, emphasizing the role of electron transfer. This methodology holds significant promise for diverse biological applications. UCNP@MIL offers an advantage in cellular uptake, which proves beneficial for cell imaging.

4.
Small ; : e2401987, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805737

RESUMO

Alternative strategies to design sustainable-element-based electrocatalysts enhancing oxygen evolution reaction (OER) kinetics are demanded to develop affordable yet high-performance water-electrolyzers for green hydrogen production. Here, it is demonstrated that the spontaneous-spin-polarized 2D π-d conjugated framework comprising abundant elements of nickel and iron with a ratio of Ni:Fe = 1:4 with benzenehexathiol linker (BHT) can improve OER kinetics by its unique electronic property. Among the bimetallic NiFex:y-BHTs with various ratios with Ni:Fe = x:y, the NiFe1:4-BHT exhibits the highest OER activity. The NiFe1:4-BHT shows a specific current density of 140 A g-1 at the overpotential of 350 mV. This performance is one of the best activities among state-of-the-art non-precious OER electrocatalysts and even comparable to that of the platinum-group-metals of RuO2 and IrO2. The density functional theory calculations uncover that introducing Ni into the homometallic Fe-BHT (e.g., Ni:Fe = 0:1) can emerge a spontaneous-spin-polarized state. Thus, this material can achieve improved OER kinetics with spin-polarization which previously required external magnetic fields. This work shows that a rational design of 2D π-d conjugated frameworks can be a powerful strategy to synthesize promising electrocatalysts with abundant elements for a wide spectrum of next-generation energy devices.

5.
Nat Commun ; 14(1): 4709, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543632

RESUMO

Chemodynamic therapy (CDT) uses the Fenton or Fenton-like reaction to yield toxic ‧OH following H2O2 → ‧OH for tumoral therapy. Unfortunately, H2O2 is often taken from the limited endogenous supply of H2O2 in cancer cells. A water oxidation CoFe Prussian blue (CFPB) nanoframes is presented to provide sustained, external energy-free self-supply of ‧OH from H2O to process CDT and/or photothermal therapy (PTT). Unexpectedly, the as-prepared CFPB nanocubes with no near-infrared (NIR) absorption is transformed into CFPB nanoframes with NIR absorption due to the increased Fe3+-N ≡ C-Fe2+ composition through the proposed proton-induced metal replacement reactions. Surprisingly, both the CFPB nanocubes and nanoframes provide for the self-supply of O2, H2O2, and ‧OH from H2O, with the nanoframe outperforming in the production of ‧OH. Simulation analysis indicates separated active sites in catalyzation of water oxidation, oxygen reduction, and Fenton-like reactions from CFPB. The liposome-covered CFPB nanoframes prepared for controllable water-driven CDT for male tumoral mice treatments.


Assuntos
Nanopartículas , Neoplasias , Masculino , Animais , Camundongos , Domínio Catalítico , Peróxido de Hidrogênio , Catálise , Água , Linhagem Celular Tumoral
6.
Phys Chem Chem Phys ; 25(28): 18973-18982, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37409653

RESUMO

Cubic garnet Li7La3Zr2O12 (c-LLZO) is a promising solid electrolyte for all-solid-state batteries, often doped with Ga, Al, and Fe to stabilize the structure and enhance Li-ion conductivity. Despite introducing the same amount of Li vacancies, these dopants with +3 classical charge yield different Li-ion conductivities by around an order of magnitude. In this study, we used density functional theory (DFT) calculations to investigate the impact of Ga, Fe, and Al dopants on Li chemical potential and Li-ion conductivity variations. We identified the energetically favorable dopant location in c-LLZO and determined the optimal U value of 7.5 eV for DFT+U calculations for dopant Fe in c-LLZO. Our calculations showed that Ga or Fe doping enhances the Li chemical potential by 0.05-0.08 eV, reducing Li-ion transfer barriers and increasing Li-ion conductivity, while Al doping lowers the Li chemical potential by 0.08 eV, reducing Li-ion conductivity. To determine the cause of Li chemical potential variations, we performed a combined analysis of the projected density of states, charge density, and Bader charge. The distinct charge distribution from dopant atoms to neighboring O atoms is critical for determining the Li-ion chemical potential. Ga and Fe dopants retain more electrons, which consequently makes the adjacent O atoms acquire a more positive charge that destabilizes Li ions by reducing the restraining force acting on them, thereby enhancing Li-ion conductivity. In contrast, Al doping transfers more electrons to neighboring O atoms, resulting in greater attraction forces to Li ions and reducing Li-ion conductivity. Additionally, Fe-doped LLZO exhibits extra states in the bandgap, potentially causing Fe reduction, as observed in experiments. Our findings provide valuable insights into the design of solid electrolytes and highlight the importance of the local charge distribution around the dopant and Li atoms in determining Li-ion conductivity. This insight could serve as a guiding principle for future materials design and optimization in solid-state electrolyte systems.

7.
ACS Appl Mater Interfaces ; 12(49): 54752-54762, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33226213

RESUMO

NASICON-type oxide Li1+xAlxTi2-x(PO4)3 (LATP) is expected to be a promising solid electrolyte (SE) for all-solid-state batteries (ASSBs) owing to its high ion conductivity and chemical stability. However, its interface properties with electrodes on the atomic scale remain unclear, but it is crucial for rational control of the ASSBs performance. Herein, we focused on the LATP SE with x = 0.17 and investigated the electron and ion transfer behaviors at the interfaces with the Li metal negative electrode and the LiCoO2 (LCO) positive electrode via explicit interface models and density functional theory calculations. Ti reduction was found at the LATP/Li interface. For the LATP/LCO interface, the results indicated the Li-ion transfer from LCO to LATP upon contact until a certain electric double layer is formed under equilibrium, in which LCO is partially reduced. Co-Ti exchange was also found to be favorable where the Li ion moves with Co3+ to LATP. We also explored the possible interfacial processes during annealing by simulating the oxygen removal effect and found that oxygen vacancy can be more easily formed in the LCO at the interface. It implies that partial Li ions move back to LCO for the local charge neutrality. We also demonstrated higher Li chemical potential around the LATP/LCO interfaces, leading to the dynamical Li-ion depletion upon charging. The calculation results and the deduced mechanisms well explain the experimental results so far and provide insights into the interfacial electron and ion transfer upon contact, during annealing, and charging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA