Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 166(4): 1026-1038, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30414186

RESUMO

At present, the lysosome pathway (LP) and proteasome pathway (PP) are known as major clearance systems in eukaryotic cells. The laticifer, a secretory tissue, degrades some cytoplasm during development. In this study, we investigated the distribution of LP and PP in non-articulated laticifers of Euphorbia helioscopia L. Electron microscopy revealed that, plastids, mitochondria and some cyotsol were degraded in the late development laticifers, where there were numerous vesicles originated from dicytosomes. Accordingly, some key proteins in LP and PP were detected in E. helioscopia latex using isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. Further immunohistochemistry analysis revealed that the clathrin heavy chain (CHC) belonging to LP and the ubiquitin-mediated proteasome degradation increases gradually as the laticifer develops. Immuno-electron microscopy revealed that the cysteine protease, CHC and AP-2 complex subunit beta-1 belonging to LP were mainly distributed in vesicles deriving from dicytosomes, which we called lysosome-like vesicles. Ubiquitin was widely distributed in the cytosol, and proteasome activity was significantly reduced when various concentrations of the inhibitor MG132 were added to the latex total protein. We hypothesize that LP and PP are distributed in E. helioscopia laticifers; and it was speculated that LP and PP might be involved in the degradation of organelles and some cytoplasmic matrix in E. helioscopia laticifers.


Assuntos
Euphorbia/metabolismo , Lisossomos/metabolismo , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Imuno-Histoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA