Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(8)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39199261

RESUMO

The geomagnetic field (GMF) is crucial for the survival and evolution of life on Earth. The weakening of the GMF, known as the hypomagnetic field (HMF), significantly affects various aspects of life on Earth. HMF has become a potential health risk for future deep space exploration. Oxidative stress is directly involved in the biological effects of HMF on animals or cells. Oxidative stress occurs when there is an imbalance favoring oxidants over antioxidants, resulting in cellular damage. Oxidative stress is a double-edged sword, depending on the degree of deviation from homeostasis. In this review, we summarize the important experimental findings from animal and cell studies on HMF exposure affecting intracellular reactive oxygen species (ROS), as well as the accompanying many physiological abnormalities, such as cognitive dysfunction, the imbalance of gut microbiota homeostasis, mood disorders, and osteoporosis. We discuss new insights into the molecular mechanisms underlying these HMF effects in the context of the signaling pathways related to ROS. Among them, mitochondria are considered to be the main organelles that respond to HMF-induced stress by regulating metabolism and ROS production in cells. In order to unravel the molecular mechanisms of HMF action, future studies need to consider the upstream and downstream pathways associated with ROS.

2.
Biochem Biophys Rep ; 38: 101696, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38586825

RESUMO

Reactive oxygen species (ROS) are one of the potential molecules in response to a hypomagnetic field (HMF), and exposure to an HMF for eight weeks led to an increase in ROS levels in the whole hippocampus area in mice. ROS are mainly derived from the byproducts of mitochondrial metabolism. However, previous in vivo studies mostly focus on the influence of one time point of HMF exposure on the mouse hippocampus and lack comparative studies on the effects of different durations of HMF exposure on the mouse hippocampus. Here, we investigated the effects of different durations of HMF on the number of active mitochondria and ROS levels in mouse hippocampus. Compared with the geomagnetic field (GMF) group, we found that the number of active mitochondria in the hippocampus was significantly reduced during the sixth week of HMF exposure, whereas the number of active mitochondria was significantly reduced and the ROS levels was significantly increased during the eighth week of HMF exposure. The number of active mitochondria gradually decreased and ROS levels gradually increased in both GMF and HMF groups with prolonged exposure time. In addition, the expression level of the PGC-1α gene in the hippocampus, the main regulator of mitochondrial biogenesis, decreased significantly in the eighth week of HMF exposure. These results reveal that the changes in active mitochondria number and ROS levels were dependent on the durations of HMF exposure, and prolonged exposure to HMF exacerbates these changes.

4.
Bioelectromagnetics ; 43(8): 462-475, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36434792

RESUMO

The gut microbiota has been considered one of the key factors in host health, which is influenced by many environmental factors. The geomagnetic field (GMF) represents one of the important environmental conditions for living organisms. Previous studies have shown that the elimination of GMF, the so-called hypomagnetic field (HMF), could affect the physiological functions and resistance to antibiotics of some microorganisms. However, whether long-term HMF exposure could alter the gut microbiota to some extent in mammals remains unclear. Here, we investigated the effects of long-term (8- and 12-week) HMF exposure on the gut microbiota in C57BL/6J mice. Our results clearly showed that 8-week HMF significantly affected the diversity and function of the mouse gut microbiota. Compared with the GMF group, the concentrations of short-chain fatty acids tended to decrease in the HMF group. Immunofluorescence analysis showed that HMF promoted colonic cell proliferation, concomitant with an increased level of reactive oxygen species (ROS). To our knowledge, this is the first in vivo finding that long-term HMF exposure could affect the mouse gut microbiota, ROS levels, and colonic cell proliferation in the colon. Moreover, the changes in gut microbiota can be restored by returning mice to the GMF environment, thus the possible harm to the microbiota caused by HMF exposure can be alleviated. © 2022 Bioelectromagnetics Society.


Assuntos
Colo , Microbioma Gastrointestinal , Espécies Reativas de Oxigênio , Animais , Camundongos , Proliferação de Células , Camundongos Endogâmicos C57BL
5.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408982

RESUMO

Previous studies have found that hypomagnetic field (HMF) exposure impairs cognition behaviors in animals; however, the underlying neural mechanisms of cognitive dysfunction are unclear. The hippocampus plays important roles in magnetoreception, memory, and spatial navigation in mammals. Therefore, the hippocampus may be the key region in the brain to reveal its neural mechanisms. We recently reported that long-term HMF exposure impairs adult hippocampal neurogenesis and cognition through reducing endogenous reactive oxygen species (ROS) levels in adult neural stem cells that are confined in the subgranular zone (SGZ) of the hippocampus. In addition to adult neural stem cells, the redox state of other cells in the hippocampus is also an important factor affecting the functions of the hippocampus. However, it is unclear whether and how long-term HMF exposure affects ROS levels in the entire hippocampus (i.e., the dentate gyrus (DG) and ammonia horn (CA) regions). Here, we demonstrate that male C57BL/6J mice exposed to 8-week HMF exhibit cognitive impairments. We then found that the ROS levels of the hippocampus were significantly higher in these HMF-exposed mice than in the geomagnetic field (GMF) group. PCR array analysis revealed that the elevated ROS levels were due to HMF-regulating genes that maintain the redox balance in vivo, such as Nox4, Gpx3. Since high levels of ROS may cause hippocampal oxidative stress, we suggest that this is another reason why HMF exposure induces cognitive impairment, besides the hippocampal neurogenesis impairments. Our study further demonstrates that GMF plays an important role in maintaining hippocampal function by regulating the appropriate endogenous ROS levels.


Assuntos
Disfunção Cognitiva , Fator de Maturação da Glia , Animais , Cognição , Disfunção Cognitiva/etiologia , Hipocampo , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Espécies Reativas de Oxigênio
6.
Nat Commun ; 12(1): 1174, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608552

RESUMO

Adult hippocampal neurogenesis contributes to learning and memory, and is sensitive to a variety of environmental stimuli. Exposure to a hypomagnetic field (HMF) influences the cognitive processes of various animals, from insects to human beings. However, whether HMF exposure affect adult hippocampal neurogenesis and hippocampus-dependent cognitions is still an enigma. Here, we showed that male C57BL/6 J mice exposed to HMF by means of near elimination of the geomagnetic field (GMF) exhibit significant impairments of adult hippocampal neurogenesis and hippocampus-dependent learning, which is strongly correlated with a reduction in the content of reactive oxygen species (ROS). However, these deficits seen in HMF-exposed mice could be rescued either by elevating ROS levels through pharmacological inhibition of ROS removal or by returning them back to GMF. Therefore, our results suggest that GMF plays an important role in adult hippocampal neurogenesis through maintaining appropriate endogenous ROS levels.


Assuntos
Cognição/fisiologia , Cognição/efeitos da radiação , Hipocampo/patologia , Hipocampo/efeitos da radiação , Campos Magnéticos/efeitos adversos , Neurogênese/fisiologia , Neurogênese/efeitos da radiação , Adulto , Animais , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Aprendizagem , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais , Neurogênese/genética , Espécies Reativas de Oxigênio
7.
Bioelectromagnetics ; 41(8): 573-580, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32997824

RESUMO

Organisms, including humans, could be exposed to hypomagnetic fields (HMFs, intensity <5 µT), e.g. in some artificially shielded magnetic environments and during deep-space flights. Previous studies have demonstrated that HMF exposure could have negative effects on the central nervous system and embryonic development in many animals. However, the underlying mechanisms remain unknown. Studies have revealed that HMFs affect cellular reactive oxygen species (ROS) levels and thereby alter physiological and biological processes in organisms. ROS, the major component of highly active free radicals, which are ubiquitous in biological systems, were hypothesized to be the candidate signaling molecules that regulate diverse physiological processes in response to changes in magnetic fields. Here, we summarize the recent advances in the study of HMF-induced negative effects on the central nervous system and early embryonic development in animals, focusing on cellular ROS and their role in response to HMFs. Furthermore, we discuss the potential mechanism through which HMFs regulate ROS levels in cells. © 2020 Bioelectromagnetics Society.


Assuntos
Campos Magnéticos , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos
8.
Artigo em Inglês | MEDLINE | ID: mdl-31227860

RESUMO

Previously, two studies have provided evidence that bats can use magnetic field cues for homing or roosting. For insectivorous bats, it is well established that foraging represents one of the most fundamental behaviors in animals relies on their ability to echolocate. Whether echolocating bats can also use magnetic cues during foraging remains unknown, however. Here, we tested the orientation behavior of Chinese noctules (Nyctalus plancyi) during foraging in a plus-shaped, 4-channel apparatus under different magnetic field conditions. To minimize the effects of spatial memory on orientation from repeated experiments, naïve bats were tested only once in each experimental condition. As expected, under geomagnetic field and a food resource offered conditions, the bats significantly preferred to enter the channel containing food, indicating that they primarily relied on direct sensory signals unrelated to magnetic cues. In contrast, when we offered food simultaneously in all four channels and minimized any differences in all other sensory signals available, the bats exhibited a clear directional preference to forage along the magnetic field direction under either geomagnetic field or a magnetic field in which the horizontal component was rotated by 90°. Our study offers a novel evidence for the importance of a geomagnetic field during foraging.


Assuntos
Comportamento Animal/fisiologia , Quirópteros/fisiologia , Campos Magnéticos , Orientação Espacial/fisiologia , Animais , Sinais (Psicologia)
9.
Int J Nanomedicine ; 10: 2619-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25878496

RESUMO

PURPOSE: This study is to demonstrate the nanoscale size effect of ferrimagnetic H-ferritin (M-HFn) nanoparticles on magnetic properties, relaxivity, enzyme mimetic activities, and application in magnetic resonance imaging (MRI) and immunohistochemical staining of cancer cells. MATERIALS AND METHODS: M-HFn nanoparticles with different sizes of magnetite cores in the range of 2.7-5.3 nm were synthesized through loading different amounts of iron into recombinant human H chain ferritin (HFn) shells. Core size, crystallinity, and magnetic properties of those M-HFn nanoparticles were analyzed by transmission electron microscope and low-temperature magnetic measurements. The MDA-MB-231 cancer cells were incubated with synthesized M-HFn nanoparticles for 24 hours in Dulbecco's Modified Eagle's Medium. In vitro MRI of cell pellets after M-HFn labeling was performed at 7 T. Iron uptake of cells was analyzed by Prussian blue staining and inductively coupled plasma mass spectrometry. Immunohistochemical staining by using the peroxidase-like activity of M-HFn nanoparticles was carried out on MDA-MB-231 tumor tissue paraffin sections. RESULTS: The saturation magnetization (M(s)), relaxivity, and peroxidase-like activity of synthesized M-HFn nanoparticles were monotonously increased with the size of ferrimagnetic cores. The M-HFn nanoparticles with the largest core size of 5.3 nm exhibit the strongest saturation magnetization, the highest peroxidase activity in immunohistochemical staining, and the highest r2 of 321 mM(-1) s(-1), allowing to detect MDA-MB-231 breast cancer cells as low as 10(4) cells mL(-1). CONCLUSION: The magnetic properties, relaxivity, and peroxidase-like activity of M-HFn nanoparticles are size dependent, which indicates that M-HFn nanoparticles with larger magnetite core can significantly enhance performance in MRI and staining of cancer cells.


Assuntos
Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Neoplasias , Coloração e Rotulagem/métodos , Linhagem Celular Tumoral , Humanos , Neoplasias/química , Neoplasias/metabolismo , Tamanho da Partícula
10.
PLoS One ; 10(4): e0123205, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25922944

RESUMO

How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 µT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 µT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.


Assuntos
Quirópteros/fisiologia , Campos Magnéticos , Orientação , Animais , Comportamento Animal , Planeta Terra , Masculino
11.
Adv Mater ; 26(16): 2566-71, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24532221

RESUMO

The avascular microscopic breast and brain tumors (<1-2 mm diameter) can be noninvasively detected by designing human heavy-chain ferritin (HFn)-based nanoparticles as molecular probes for near-infrared fluorescence and magnetic resonance imaging. The intravenously injected HFn-based nano-particles (Cy5.5-HFn and M-HFn) can cross the endothelium, epithelium, and blood-brain barriers and be internalized into tumor cells.


Assuntos
Meios de Contraste/metabolismo , Ferritinas/metabolismo , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Animais , Transporte Biológico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Carbocianinas/química , Linhagem Celular Tumoral , Meios de Contraste/química , Ferritinas/química , Humanos , Camundongos
12.
Biometals ; 25(1): 193-202, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22020807

RESUMO

Ferritin is not only important for iron storage and detoxification in living organisms, but a multifunctional size-constrained nanoplatform for biomimetic nanoparticles. In order to tailor the biomimetic nanoparticles for future applications, it is essential to investigate the effects of external factors such as temperature on the particle size and structure of reconstituted cores in ferritin. In this study, we systematically investigated the mineral composition, crystallinity, and particle size of human H-ferritin (HuHF) reconstituted at four different temperatures (25, 30, 37, and 42°C) by integrated magnetic and transmission electron microscopy analyses. Our results showed that the particle size of reconstituted ferrihydrite cores (~5 nm) in HuHF was temperature-independent. However, the significant changes of the induced magnetization at 5 T field (M(5T)) and remanent magnetization (M(r)) at 5 K clearly showed that the crystallinity of reconstituted cores increased with increasing temperature, indicating that the reaction temperature deeply affects the structural order of reconstituted ferrihydrite cores rather than the particle size, and the reconstituted cores become more ordered at higher reaction temperatures. Our findings provide useful insights into biomineralization of ferritin under in vivo fever condition as well as in biomimetic synthesis of nanomaterials using ferritin. Furthermore, the rock magnetic methods should be very useful approaches for characterizing finite ferritin nanoparticles.


Assuntos
Apoferritinas/química , Compostos Férricos/química , Apoferritinas/ultraestrutura , Humanos , Fenômenos Magnéticos , Tamanho da Partícula , Temperatura
13.
Bioelectromagnetics ; 31(7): 499-503, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20607738

RESUMO

Recent behavioral observations have indicated that bats can sense the Earth's magnetic field. To unravel the magnetoreception mechanism, the present study has utilized magnetic measurements on three migratory species (Miniopterus fuliginosus, Chaerephon plicata, and Nyctalus plancyi) and three non-migratory species (Hipposideros armiger, Myotis ricketti, and Rhinolophus ferrumequinum). Room temperature isothermal remanent magnetization acquisition and alternating-field demagnetization showed that the bats' heads contain soft magnetic particles. Statistical analyses indicated that the saturation isothermal remanent magnetization of brains (SIRM(1T_brain)) of migratory species is higher than those of non-migratory species. Furthermore, the SIRM(1T_brain) of migratory bats is greater than their SIRM(1T_skull). Low-temperature magnetic measurements suggested that the magnetic particles are likely magnetite (Fe3O4). This new evidence supports the assumption that some bats use magnetite particles for sensing and orientation in the Earth's magnetic field.


Assuntos
Quirópteros/fisiologia , Cabeça/fisiologia , Magnetismo , Migração Animal , Animais , Quirópteros/classificação , Óxido Ferroso-Férrico/análise , Temperatura
14.
Biophys J ; 97(4): 986-91, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19686645

RESUMO

Magnetotactic bacteria are microorganisms that orient and migrate along magnetic field lines. The classical model of polar magnetotaxis predicts that the field-parallel migration velocity of magnetotactic bacteria increases monotonically with the strength of an applied magnetic field. We here test this model experimentally on magnetotactic coccoid bacteria that swim along helical trajectories. It turns out that the contribution of the field-parallel migration velocity decreases with increasing field strength from 0.1 to 1.5 mT. This unexpected observation can be explained and reproduced in a mathematical model under the assumption that the magnetosome chain is inclined with respect to the flagellar propulsion axis. The magnetic disadvantage, however, becomes apparent only in stronger than geomagnetic fields, which suggests that magnetotaxis is optimized under geomagnetic field conditions. It is therefore not beneficial for these bacteria to increase their intracellular magnetic dipole moment beyond the value needed to overcome Brownian motion in geomagnetic field conditions.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos da radiação , Movimento Celular/fisiologia , Movimento Celular/efeitos da radiação , Modelos Biológicos , Simulação por Computador , Relação Dose-Resposta à Radiação , Campos Eletromagnéticos , Doses de Radiação
15.
FEMS Microbiol Lett ; 279(2): 202-6, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18179585

RESUMO

The racetrack-based PCR approach is widely used in phylogenetic analysis of magnetotactic bacteria (MTB), which are isolated from environmental samples using the capillary racetrack method. To evaluate whether the capillary racetrack-based enrichment can truly reflect the diversity of MTB in the targeted environmental sample, phylogenetic diversity studies of MTB enriched from the Miyun lake near Beijing were carried out, using both the capillary racetrack-based PCR and a modified metagenome-based PCR approach. Magnetotactic cocci were identified in the studied sample using both approaches. Comparative studies showed that three clusters of magnetotactic cocci were revealed by the modified metagenome-based PCR approach, while only one of them (e.g. MYG-22 sequence) was detected by the racetrack-based PCR approach from the studied sample. This suggests that the result of capillary racetrack-based enrichment might have been biased by the magnetotaxis of magnetotactic bacteria. It appears that the metagenome-based PCR approach better reflects the original diversity of MTB in the environmental sample.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Técnicas Bacteriológicas/métodos , Reação em Cadeia da Polimerase/métodos , Microbiologia da Água , Bactérias/genética , China , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
16.
Biometals ; 20(2): 197-203, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16900396

RESUMO

We carried out magnetic and nonmagnetic experiments on fresh, upper-beak skin tissue samples isolated from six pairs of homing pigeons to test whether the tissue contains magnetite particles. Results of (1) room-temperature isothermal remanent magnetization (IRM) acquisition and alternating field (AF) demagnetization, (2) low-temperature demagnetization of saturation IRM acquired at 5 K in a field of 5 tesla (T) (SIRM(5 K)) after zero-field cooled (ZFC) and field cooled (FC) treatments, and (3) cycling of the saturation IRM acquired at 300 K in a field of 5 T (SIRM(300 K)) between 5 and 300 K, indicate the presence of magnetite in the measured samples. A significant loss of SIRM(5 K) below 20 K suggests the dominance of superparamagnetic (SPM) particles. The SIRM acquisition capacity of the female pigeon is stronger than that of the male pigeon in all four measured pairs, suggesting for the first time that the magnetite concentration is probably sex dependent. Light microscopic observation on the histological sections stained with Prussian Blue detected the presence of some tiny, dotted, dark-blue staining Fe3+ aggregates (size 1-4 microm) located directly beneath the subcutis within strands of connective tissue, nearby the rim of the regions full of red nuclei. The results of this study support the idea that homing pigeons may have a magnetite-based receptor, which potentially could be used for sensing the Earth's magnetic field during navigation.


Assuntos
Bico/química , Columbidae/anatomia & histologia , Óxido Ferroso-Férrico/análise , Pele/química , Animais , Bico/anatomia & histologia , Feminino , Magnetismo , Masculino , Fatores Sexuais , Pele/citologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA