Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 894: 165003, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348713

RESUMO

Fine root traits are critical to plant nutrition and water uptake, and soil nutrient cycling. The impacts of climate warming on woody plants are predicted to be severe, but the effects on the fine root traits of woody plants remain unclear. To evaluate the effects of warming on fine-root traits of woody plants, we synthesized 431 paired observations of 13 traits from 78 studies. The result showed that warming increased the fine root nitrogen (N) concentration, root mortality, and root respiration, but decreased fine root phosphorus (P) concentration, root C:N and root nonstructural carbohydrates (NSC) concentration. However, warming had no significant effect on fine root biomass, root production and morphological traits. Warming effects on fine root biomass and root diameter decreased with warming magnitude, while root P concentration increased. Moreover, with increasing warming duration, the effect size of specific root length (SRL), root length, root C:N and root NSC increased. The effects size of root biomass, root diameter, root length and root C:N decreased with mean annual temperature (MAT) and mean annual precipitation (MAP) increase. However, the effect size of root N concentration increased with higher MAT and MAP. Furthermore, warming increased the fine root biomass of ectomycorrhiza (ECM) plants, but decreased that of plants associated with arbuscular mycorrhizal (AM) fungi. These results indicate that the effect of warming on fine root traits of woody plants was not only modulated by warming duration and magnitude, but also MAT and MAP. Our findings highlight the differential warming responses to fine root traits of woody plants, which have strong implications for shrubs and tree-dominated ecosystems soil nutrients cycling and carbon stocks.


Assuntos
Ecossistema , Micorrizas , Raízes de Plantas/microbiologia , Micorrizas/fisiologia , Plantas , Biomassa , Carboidratos , Nitrogênio , Solo
2.
Microb Ecol ; 85(2): 628-641, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35083529

RESUMO

Microorganisms inhabit the entire soil profile and play important roles in nutrient cycling and soil formation. Recent studies have found that soil bacterial diversity and composition differ significantly among soil layers. However, little is known about the vertical variation in soil bacterial communities and how it may change along an elevation gradient. In this study, we collected soil samples from 5 forest types along an elevation gradient in Taibai Mountain to characterize the bacterial communities and their vertical patterns and variations across soil profiles. The richness and Shannon index of soil bacterial communities decreased from surface soils to deep soils in three forest types, and were comparable among soil layers in the other two forests at the medium elevation. The composition of soil bacterial communities differed significantly between soil layers in all forest types, and was primarily affected by soil C availability. Oligotrophic members of the bacterial taxa, such as Chloroflexi, Gemmatimonadetes, Nitrospirae, and AD3, were more abundant in the deep layers. The assembly of soil bacterial communities within each soil profile was mainly governed by deterministic processes based on environmental heterogeneity. The vertical variations in soil bacterial communities differed among forest types, and the soil bacterial communities in the Betula albo-sinensis forest at the medium elevation had the lowest vertical variation. The vertical variation was negatively correlated with mean annual precipitation (MAP), weighted rock content, and weighted sand particle content in soils, among which MAP had the highest explanatory power. These results indicated that the vertical mobilization of microbes with preferential and matrix flows likely enhanced bacterial homogeneity. Overall, our results suggest that the vertical variations in soil bacterial communities differ along the elevation gradient and potentially affect soil biological processes across soil profiles.


Assuntos
Chloroflexi , Solo , Microbiologia do Solo , Florestas , Bactérias
3.
J For Res (Harbin) ; 34(3): 665-675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35909796

RESUMO

Fine roots play key roles in belowground C cycling in terrestrial ecosystems. Based on their distinct functions, fine roots are either absorptive fine roots (AFRs) or transport fine roots (TFRs). However, the function-based fine root dynamics of trees and their responses to forest stand properties remain unclear. Here, we studied the dynamics of AFRs and TFRs and their responses to stand conditions and root density in a subtropical montane mixed forest based on a 2-a root window experiment. Mean (± SE) annual production, mortality, and turnover rate of AFRs were 7.87 ± 0.17 m m-2 a-1, 8.13 ± 0.20 m m-2 a-1and 2.96 ± 0.24 a-1, respectively, compared with 7.09 ± 0.17 m m-2 a-1, 4.59 ± 0.17 m m-2 a-1, and 2.01 ± 0.22 a-1, respectively, for TFRs. The production and mortality of fine roots were significantly higher in high root-density sites than in low-root density sites, whereas the turnover of fine roots was faster in the low root-density sites. Furthermore, root density had a larger positive effect than other environmental factors on TFR production but had no obvious impact on AFR production. Tree species diversity had an apparent positive effect on AFR production and was the crucial driver of AFR production, probably due to a complementary effect, but had no evident impact on TFR. Both tree density and tree species diversity were positively correlated with the mortality of AFRs and negatively related to the turnover of TFRs, suggesting that higher root density caused stronger competition for rooting space and that plants tend to reduce maintenance costs by decreasing TFR turnover. These findings illustrated the importance of root functional groups in understanding root dynamics and their responses to changes in environmental conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s11676-022-01514-0.

4.
Sci Total Environ ; 844: 157111, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35787896

RESUMO

Nitrogen (N) deposition has complex effects on vegetation dynamics and nutrient cycling in terrestrial ecosystems. However, how N deposition alters fine root traits remains unclear in forest ecosystems. Here, we carried out a synthesis based on 890 paired observations of 14 fine root traits from 79 articles to assess the effects of N deposition on fine root traits. The results showed that N deposition mainly affected root nutrient content and stoichiometry. Specifically, N deposition increased the root N content, root carbon: phosphorus (C:P) and root nitrogen: phosphorus (N:P) ratio, but decreased the root P content and root C:N ratio. Moreover, N deposition increased fine root respiration, but had no significant effect on other root morphological and physiological traits. N deposition effects on fine root biomass, root tissue density and fungal colonization decreased with N deposition duration. Compared to fine root P content, N deposition effects on fine root C content and C:P ratio increased with N deposition level. Moreover, the interaction between N deposition level and duration significantly affected fine root biomass. N deposition effects on fine-root biomass decreased with greater N deposition duration, especially in high N deposition experiments. Moreover, the effect of N deposition on root diameter decreased with mean annual temperature and mean annual precipitation. N form, forest type and soil depth significantly affect the effect of N deposition on fine root C:P. Therefore, the effects of N deposition on fine root traits were not only determined by N deposition level, duration and their interactions, but also regulated by abiotic factors. These findings highlight the diverse responses of fine root traits to N deposition have strong implications for forest ecosystems soil carbon stocks in a world of increasing N deposition associated with decreased root-derived carbon inputs and increases in fine-root respiration.


Assuntos
Ecossistema , Nitrogênio , Biomassa , Carbono , Florestas , Nitrogênio/análise , Fósforo , Raízes de Plantas/química , Solo
5.
Front Microbiol ; 12: 646124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394018

RESUMO

Elevational gradients strongly affect the spatial distribution and structure of soil bacterial communities. However, our understanding of the effects and determining factors is still limited, especially in the deep soil layer. Here, we investigated the diversity and composition of soil bacterial communities in different soil layers along a 1,500-m elevational gradient in the Taibai Mountain. The variables associated with climate conditions, plant communities, and soil properties were analyzed to assess their contributions to the variations in bacterial communities. Soil bacterial richness and α-diversity showed a hump-shaped trend with elevation in both surface and deep layers. In the surface layer, pH was the main factor driving the elevational pattern in bacterial diversity, while in the deep layer, pH and soil carbon (C) availability were the two main predictors. Bacterial community composition differed significantly along the elevational gradient in all soil layers. In the surface layer, Acidobacteria, Delta-proteobacteria, and Planctomycetes were significantly more abundant in the lower elevation sites than in the higher elevation sites; and Gemmatimonadetes, Chloroflexi, and Beta-proteobacteria were more abundant in the higher elevation sites. In the deep layer, AD3 was most abundant in the highest elevation site. The elevational pattern of community composition co-varied with mean annual temperature, mean annual precipitation, diversity and basal area of trees, pH, soil C availability, and soil C fractions. Statistical results showed that pH was the main driver of the elevational pattern of the bacterial community composition in the surface soil layer, while soil C fractions contributed more to the variance of the bacterial composition in the deep soil layer. These results indicated that changes in soil bacterial communities along the elevational gradient were driven by soil properties in both surface and deep soil layers, which are critical for predicting ecosystem functions under future climate change scenarios.

6.
PeerJ ; 8: e9128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435542

RESUMO

BACKGROUND: Labile carbon input could stimulate soil organic carbon (SOC) mineralization through priming effect, resulting in soil carbon (C) loss. Meanwhile, labile C could also be transformed by microorganisms in soil as the processes of new C sequestration and stabilization. Previous studies showed the magnitude of priming effect could be affected by soil depth and nitrogen (N). However, it remains unknown how the soil depth and N availability affect the amount and stability of the new sequestrated C, which complicates the prediction of C dynamics. METHODS: A 20-day incubation experiment was conducted by adding 13C labeled glucose and NH4NO3 to study the effects of soil depth and nitrogen addition on the net C sequestration. SOC was fractioned into seven fractions and grouped into three functional C pools to assess the stabilization of the new sequestrated C. RESULTS: Our results showed that glucose addition caused positive priming in both soil depths, and N addition significantly reduced the priming effect. After 20 days of incubation, deep soil had a higher C sequestration potential (48% glucose-C) than surface soil (43% glucose-C). The C sequestration potential was not affected by N addition in both soil depths. Positive net C sequestration was observed with higher amount of retained glucose-C than that of stimulated mineralized SOC for both soil depths. The distribution of new sequestrated C in the seven fractions was significantly affected by soil depth, but not N addition. Compared to deep soil, the new C in surface soil was more distributed in the non-protected C pool (including water extracted organic C, light fraction and sand fraction) and less distributed in the clay fraction. These results suggested that the new C in deep soil was more stable than that in surface soil. Compared to the native SOC for both soil depths, the new sequestrated C was more distributed in non-protected C pool and less distributed in biochemically protected C pool (non-hydrolyzable silt and clay fractions). The higher carbon sequestration potential and stability in deep soil suggested that deep soil has a greater role on C sequestration in forest ecosystems.

7.
Epilepsy Res ; 154: 139-143, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31151073

RESUMO

PURPOSE: Valproic acid (VPA) is frequently used in the treatment of epilepsy. The adverse effects of VPA include hyperammonemia (HA) which is characterized by abnormally elevated blood ammonia level. Carbamoyl-Phosphate Synthase 1 (CPS1) is an enzyme catalyzing the initial step of removing ammonia from blood. Studies have demonstrated that the CPS1 polymorphism rs1047891-A allele carriers were susceptible to VPA-induced HA. However, the evidences remained controversial. In this study, we sought to validate the association between rs1047891 and VPA-induced HA by combining the association results from previous studies together. METHODS: We first conducted a systematic meta-analysis to determine whether rs1047891 was statistically significant. Then, we further evaluated the pleiotropic effects of rs1047891 using published genome-wide association studies (GWAS) and UKBB results. A conditional analysis was conducted to investigate whether the association between rs1047891 and VPA-induced HA was mediated by cardiovascular or renal disease risk factors or vice versa. RESULTS: The allelic, dominant and recessive ORs of rs1047891-A were all significant in our fixed-effect meta-analysis. In GWAS catalog and UKBB data, rs1047891 was associated with basal metabolic rate, adiposity and hematology traits, cardiovascular and renal disease risk factors. We further proved that plasma HDL cholesterol and homocysteine level, in addition to eGFR by serum creatinine, were associated with VPA-induced HA risk independently from rs1047891 polymorphism. CONCLUSION: In conclusion, the SNP rs1047891 was associated with VPA-induce HA among epilepsy patients. Meanwhile, plasma HDL cholesterol and homocysteine level had independent effects from it.


Assuntos
Carbamoil-Fosfato Sintase (Amônia) , HDL-Colesterol/sangue , Epilepsia/sangue , Homocisteína/sangue , Hiperamonemia/sangue , Rim/fisiologia , Ácido Valproico/efeitos adversos , Anticonvulsivantes/efeitos adversos , Carbamoil-Fosfato Sintase (Amônia)/genética , Estudos de Casos e Controles , HDL-Colesterol/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Homocisteína/genética , Humanos , Hiperamonemia/induzido quimicamente , Hiperamonemia/genética , Rim/efeitos dos fármacos , Polimorfismo Genético/genética , Fatores de Risco
8.
Sci Rep ; 6: 18783, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26733344

RESUMO

Changes in soil organic carbon (SOC) stability may alter carbon release from the soil and, consequently, atmospheric CO2 concentration. The mean annual temperature (MAT) can change the soil physico-chemical characteristics and alter the quality and quantity of litter input into the soil that regulate SOC stability. However, the relationship between climate and SOC stability remains unclear. A 500-day incubation experiment was carried out on soils from an 11 °C-gradient mountainous system on Changbai Mountain in northeast China. Soil respiration during the incubation fitted well to a three-pool (labile, intermediate and stable) SOC decomposition model. A correlation analysis revealed that the MAT only influenced the labile carbon pool size and not the SOC stability. The intermediate carbon pool contributed dominantly to cumulative carbon release. The size of the intermediate pool was strongly related to the percentage of sand particle. The decomposition rate of the intermediate pool was negatively related to soil nitrogen availability. Because both soil texture and nitrogen availability are temperature independent, the stability of SOC was not associated with the MAT, but was heavily influenced by the intrinsic processes of SOC formation and the nutrient status.


Assuntos
Altitude , Carbono/química , Ecossistema , Florestas , Solo/química , China
9.
Ying Yong Sheng Tai Xue Bao ; 24(7): 1777-83, 2013 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-24175504

RESUMO

In July 2010, soil samples were collected from five typical forests (Pinus koraiensis and broadleaved mixed forest, Picea and Abies forest, Larix and Abies forest, Betula ermanii forest, and alpine tundra) along an altitude gradient on the northern slope of Changbai Mountains to investigate the distribution and quantity of neutral sugar in the soils and related affecting factors. The origins of the neutral sugar were differentiated to probe into the biochemical accumulation mechanisms of soil organic matter. There was a significant difference in the neutral sugar content among the forest soils. The relative content of soil neutral sugar' s carbon to soil organic carbon ranged in 80.55-170.63 mg C x g(-1), and tended to be increased with elevated altitude. The multiple regression analysis showed that the mean temperature in growth season was the main factor affecting the relative content of soil neutral sugar, and low temperature was conducive to the accumulation of neutral sugar. The ratio of (galactose + mannose) / (arabinose + xylose) in the five soils was around 1.62-2.28, and had an increasing trend with elevated altitude, illustrating that the contribution of soil microbial neutral sugar to soil organic matter increased with elevated altitude. Soil microbial metabolic quotient declined significantly along elevated altitude, suggesting that in low temperature environment, soil microbial activity decreased but the carbon utilization efficiency enhanced. As a result, a significant portion of decomposed plant residues was transformed into microbial neutral sugar and accumulated stably in soil, and thus, increased the proportion of soil microbial neutral sugar.


Assuntos
Altitude , Carboidratos/análise , Florestas , Solo/química , Árvores/crescimento & desenvolvimento , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA