Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Front Microbiol ; 15: 1359340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414769

RESUMO

Background: The escalating resistance of Klebsiella pneumoniae, a prevalent pathogen in healthcare settings, especially its carbapenem-resistant K. pneumoniae (CRKP), to a wide array of antibiotics, notably ß-lactams, constitutes a formidable challenge for healthcare and global public health management. Methods: This research compared the resistance phenotypes and genomic profiles of CRKP and Non-CRKP isolates in a Beijing hospital, focusing on high-risk blaKPC-2 gene-bearing CRKP clones and the structure of mobile genetic elements facilitating their spread across hospital departments. Forty K. pneumoniae isolates were collected from various departments of the hospital and subjected to antimicrobial susceptibility testing and whole-genome sequencing to analyze their resistance phenotypes and genomic features. Results: The study revealed that among the 31 CRKP isolates, ST11 is the most common sequence type, with K47 and OL101 being the dominant capsule types, primarily observed in the respiratory department. In terms of antimicrobial susceptibility: 87.5% of the isolates exhibited multidrug resistance (MDR), with a high resistance rate of 30% against tigecycline. All CRKP isolates demonstrated resistance to multiple drug classes (≥5 CLSI classes). Non-CRKP isolates also showed high resistance rates to minocycline and doxycycline (77.8%). the ST11-KL47-OL101 type emerged as the predominant clone among the CRKP isolates carrying the blaKPC-2 gene. This dominance appears to be mediated by the pKpnR03_2 plasmid, which harbors not only blaKPC-2 and rmtb but also gene clusters pertinent to iron transport and arsenic resistance. These isolates, clustering in the C3 clade of the phylogenetic tree, exhibited minor genetic variations and close evolutionary relationships, suggesting a plasmid-driven spread across various hospital departments. Conclusion: In summary, our study highlights the extensive spread of antibiotic-resistant K. pneumoniae across various departments in our hospital, with a particular emphasis on the dominant clonal proliferation of the ST11-KL47-OL101 CRKP strain. This finding underscores the significant role of plasmid-mediated gene transfer in the evolution and dissemination of resistant strains within hospital environments. The study emphasizes the necessity for ongoing surveillance of antibiotic resistance and genomic analysis in hospital settings to effectively monitor and manage these challenges.

2.
BMC Genomics ; 25(1): 189, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368357

RESUMO

BACKGROUND: CRISPR-Cas9 technology has advanced in vivo gene therapy for disorders like hemophilia A, notably through the successful targeted incorporation of the F8 gene into the Alb locus in hepatocytes, effectively curing this disorder in mice. However, thoroughly evaluating the safety and specificity of this therapy is essential. Our study introduces a novel methodology to analyze complex insertion sequences at the on-target edited locus, utilizing barcoded long-range PCR, CRISPR RNP-mediated deletion of unedited alleles, magnetic bead-based long amplicon enrichment, and nanopore sequencing. RESULTS: We identified the expected F8 insertions and various fragment combinations resulting from the in vivo linearization of the double-cut plasmid donor. Notably, our research is the first to document insertions exceeding ten kbp. We also found that a small proportion of these insertions were derived from sources other than donor plasmids, including Cas9-sgRNA plasmids, genomic DNA fragments, and LINE-1 elements. CONCLUSIONS: Our study presents a robust method for analyzing the complexity of on-target editing, particularly for in vivo long insertions, where donor template integration can be challenging. This work offers a new tool for quality control in gene editing outcomes and underscores the importance of detailed characterization of edited genomic sequences. Our findings have significant implications for enhancing the safety and effectiveness of CRISPR-Cas9 gene therapy in treating various disorders, including hemophilia A.


Assuntos
Hemofilia A , Sequenciamento por Nanoporos , Camundongos , Animais , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Hemofilia A/genética , Hemofilia A/terapia , Edição de Genes/métodos , DNA
3.
J Med Virol ; 95(7): e28902, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394758

RESUMO

Human astrovirus (HAstV) is a single-stranded, positive-sense RNA virus and is the leading cause of viral gastroenteritis. However, despite its prevalence, astroviruses still remain one of the least studied enteroviruses. In this study, we sequenced 11 classical astrovirus strains from clinical samples collected in Shenzhen, China from 2016 to 2019, analyzed their genetic characteristics, and deposited them into GenBank. We conducted phylogenetic analysis using IQ-TREE software, with references to astrovirus sequences worldwide. The phylogeographic analysis was performed using the Bayesian Evolutionary Analysis Sampling Trees program, through Bayesian Markov Chain Monte Carlo sampling. We also conducted recombination analysis with the Recombination Detection Program. The newly sequenced strains were categorized as HAstV genotype 1, which is the predominant genotype in Shenzhen. Phylogeographic reconstruction indicated that HAstV-1 may have migrated from the United States to China, followed by frequent transmission between China and Japan. The recombination analysis revealed recombination events within and across genotypes, and identified a recombination-prone region that produced relatively uniform recombination breakpoints and fragment lengths. The genetic analysis of HAstV strains in Shenzhen addresses the current lack of astrovirus data in the region of Shenzhen and provides key insights to the evolution and transmission of astroviruses worldwide. These findings highlight the importance of improving surveillance of astroviruses.


Assuntos
Infecções por Astroviridae , Astroviridae , Mamastrovirus , Humanos , Filogenia , Teorema de Bayes , Infecções por Astroviridae/epidemiologia , RNA Viral/genética , Fezes , Astroviridae/genética , Mamastrovirus/genética , China/epidemiologia , Genótipo
4.
Am J Chin Med ; 51(5): 1153-1188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37403214

RESUMO

COVID-19 has posed unprecedented challenges to global public health since its outbreak. The Qing-Fei-Pai-Du decoction (QFPDD), a Chinese herbal formula, is widely used in China to treat COVID-19. It exerts an impressive therapeutic effect by inhibiting the progression from mild to critical disease in the clinic. However, the underlying mechanisms remain obscure. Both SARS-CoV-2 and influenza viruses elicit similar pathological processes. Their severe manifestations, such as acute respiratory distress syndrome (ARDS), multiple organ failure (MOF), and viral sepsis, are correlated with the cytokine storm. During flu infection, QFPDD reduced the lung indexes and downregulated the expressions of MCP-1, TNF-[Formula: see text], IL-6, and IL-1[Formula: see text] in broncho-alveolar lavage fluid (BALF), lungs, or serum samples. The infiltration of neutrophils and inflammatory monocytes in lungs was decreased dramatically, and lung injury was ameliorated in QFPDD-treated flu mice. In addition, QFPDD also inhibited the polarization of M1 macrophages and downregulated the expressions of IL-6, TNF-[Formula: see text], MIP-2, MCP-1, and IP-10, while also upregulating the IL-10 expression. The phosphorylated TAK1, IKK[Formula: see text]/[Formula: see text], and I[Formula: see text]B[Formula: see text] and the subsequent translocation of phosphorylated p65 into the nuclei were decreased by QFPDD. These findings indicated that QFPDD reduces the intensity of the cytokine storm by inhibiting the NF-[Formula: see text]B signaling pathway during severe viral infections, thereby providing theoretical and experimental support for its clinical application in respiratory viral infections.


Assuntos
COVID-19 , Interleucina-6 , Animais , Camundongos , Interleucina-6/metabolismo , COVID-19/metabolismo , SARS-CoV-2 , Neutrófilos/metabolismo , Síndrome da Liberação de Citocina , Macrófagos/metabolismo , NF-kappa B/metabolismo
5.
Sci Adv ; 9(23): eadg0330, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285422

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern challenge the efficacy of approved vaccines, emphasizing the need for updated spike antigens. Here, we use an evolutionary-based design aimed at boosting protein expression levels of S-2P and improving immunogenic outcomes in mice. Thirty-six prototype antigens were generated in silico and 15 were produced for biochemical analysis. S2D14, which contains 20 computationally designed mutations within the S2 domain and a rationally engineered D614G mutation in the SD2 domain, has an ~11-fold increase in protein yield and retains RBD antigenicity. Cryo-electron microscopy structures reveal a mixture of populations in various RBD conformational states. Vaccination of mice with adjuvanted S2D14 elicited higher cross-neutralizing antibody titers than adjuvanted S-2P against the SARS-CoV-2 Wuhan strain and four variants of concern. S2D14 may be a useful scaffold or tool for the design of future coronavirus vaccines, and the approaches used for the design of S2D14 may be broadly applicable to streamline vaccine discovery.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Anticorpos Antivirais , Testes de Neutralização , Microscopia Crioeletrônica
6.
Expert Opin Ther Targets ; 27(6): 503-515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37314372

RESUMO

INTRODUCTION: Despite the advances made in cancer treatment in the past decades, therapeutic efficacy is still quite challenging, partially due to the emergence of multidrug resistance (MDR). It is crucial to decipher the underlying mechanisms of resistance in order to develop new therapeutic strategies for cancer patients. Previous studies have shown that activation of nuclear factor-κB (NF-κB) plays key roles in various cellular processes including proliferation, anti-apoptosis, metastasis, invasion, and chemoresistance. AREAS COVERED: In this review, we conduct an integrated analysis of the evidence suggesting the vital roles of the NF-κB signaling pathway in MDR during chemotherapy, immunotherapy, endocrine, and targeted therapy. A literature search was performed on NF-κB and drug resistance in PubMed up to February 2023. EXPERT OPINION: This review summarizes that the NF-κB signaling pathway exhibits a crucial role in enhancing drug resistance in chemotherapy, immunotherapy, endocrine, and targeted therapy. The application of combination therapy with existing antineoplastic drugs and a safe NF-κB inhibitor could become a promising strategy in cancer treatment. A better understanding of the pathway and mechanisms of drug resistance may help exploit safer and more effective NF-κB-targeting agents for clinical use in the future.


Assuntos
Antineoplásicos , Neoplasias , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
7.
Diabetes Metab Res Rev ; 39(7): e3673, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37302139

RESUMO

We aimed to summarise current evidence on different antidiabetic drugs to delay cognitive impairment, including mild cognitive impairment, dementia, Alzheimer's disease (AD) and vascular dementia, among subjects with type 2 diabetes mellitus (T2DM). Medline, Cochrane and Embase databases were searched from inception to 31 July 2022. Two investigators independently reviewed and screened trials comparing antidiabetic drugs with no antidiabetic drugs, placebo, or other active antidiabetic drugs on cognitive outcomes in T2DM. Data were analysed using meta-analysis and network meta-analysis. Twenty-seven studies met the inclusion criteria, including 3 randomised controlled trials, 19 cohort studies and 5 case-control studies. Compared with non-user, SGLT-2i (OR 0.41 [95% CI 0.22-0.76]), GLP-1RA (OR 0.34 [95% CI 0.14-0.85]), thiazolidinedione (OR 0.60 [95% CI 0.51-0.69]), and DPP-4i (OR 0.78 [95% CI 0.61-0.99]) users had a decreased risk of dementia, whereas sulfonylurea (OR 1.43 [95% CI 1.11-1.82]) increased dementia risk. Network meta-analysis showed that SGLT-2i was most likely to rank best (SUCRA = 94.4%), GLP-1 RA second best (SUCRA = 92.7%), thiazolidinedione third best (SUCRA = 74.7%) and DPP-4i fourth best (SUCRA = 54.9%), while sulfonylurea second worst (SUCRA = 20.0%) for decreasing dementia outcomes, by synthesising evidence from direct and indirect comparisons of multiple intervention. Evidence suggests the effects of SGLT-2i ≈ GLP-1 RAs > thiazolidinedione > DPP-4i for delaying cognitive impairment, dementia and AD outcomes, whereas sulfonylurea was associated with the highest risk. These findings provide evidence for evaluating the optional treatment for clinical practice. PROSPERO REGISTRATION: Registration no. CRD42022347280.


Assuntos
Demência , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Tiazolidinedionas , Humanos , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Metanálise em Rede , Compostos de Sulfonilureia/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Demência/epidemiologia , Demência/complicações , Tiazolidinedionas/uso terapêutico , Cognição , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1
8.
Vaccine ; 41(21): 3308-3316, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37085457

RESUMO

In the past decade, camelid nanobodies have been developed for multiple applications, including immuno-imaging, cancer immunotherapy, and antiviral therapeutics. Despite the prevalence of these approaches, nanobodies have rarely been used to assess the potency of vaccine antigen candidates, which are primarily based on mAb binding approaches. In this work, we demonstrate that a nanobody-based ELISA method is suitable for characterization of a leading respiratory syncytial virus (RSV) vaccine candidate, RSVPreF3. This nanobody, F-VHH-L66, compares similarly with AM14, an antibody well-known to be specific for the prefusion form of the RSV surface fusion glycoprotein, RSV F. ELISA assays based on F-VHH-L66 were specific for the trimeric, prefusion form of RSV F, the antigen conformation that best generates neutralizing antibodies. Additionally, the F-VHH-L66-based ELISA proved accurate, linear, and stability-indicating. Statistical analysis of 65 independent F-VHH-L66-based ELISA experiments indicated assay performance similar to that of ELISA assays based on AM14. Moreover, the binding kinetics of F-VHH-L66 to RSVPreF3 are comparable to those of AM14 when measured by surface plasmon resonance (SPR). Finally, F-VHH-L66 neutralized RSV(A) with similar efficacy as AM14; this bioactivity data further supports its use as an alternative to AM14 for pre-fusion specific structural characterization of RSVPreF3.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Anticorpos de Domínio Único , Humanos , Anticorpos Antivirais , Anticorpos Neutralizantes , Antivirais , Proteínas Virais de Fusão , Infecções por Vírus Respiratório Sincicial/prevenção & controle
9.
Signal Transduct Target Ther ; 8(1): 123, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922500

RESUMO

Persistent asymptomatic (PA) SARS-CoV-2 infections have been identified. The immune responses in these patients are unclear, and the development of effective treatments for these patients is needed. Here, we report a cohort of 23 PA cases carrying viral RNA for up to 191 days. PA cases displayed low levels of inflammatory and interferon response, weak antibody response, diminished circulating follicular helper T cells (cTfh), and inadequate specific CD4+ and CD8+ T-cell responses during infection, which is distinct from symptomatic infections and resembling impaired immune activation. Administration of a single dose of Ad5-nCoV vaccine to 10 of these PA cases elicited rapid and robust antibody responses as well as coordinated B-cell and cTfh responses, resulting in successful viral clearance. Vaccine-induced antibodies were able to neutralize various variants of concern and persisted for over 6 months, indicating long-term protection. Therefore, our study provides an insight into the immune status of PA infections and highlights vaccination as a potential treatment for prolonged SARS-CoV-2 infections.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Infecções Assintomáticas , Anticorpos Antivirais
10.
J Med Virol ; 94(12): 6111-6115, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35981961

RESUMO

Human adenoviruses (HAdVs) can cause acute respiratory diseases (ARDs) worldwide, and HAdV-55 is a reemergent pathogen in recent years. In the study, we investigated an outbreak of ARD at a school due to HAdV-55 in Beijing, China, during the early outbreak of coronavirus disease 2019 (COVID-19). The epidemic prevention team was dispatched to the school to collect epidemiologic data and nasopharyngeal samples. Then, real-time reverse transcription polymerase chain reaction (PCR) and multiplex PCR assays were used to detect severe acute respiratory syndrome coronavirus 2 and other respiratory pathogens, respectively. One representative HAdV-55 isolate was selected and submitted for whole-genome sequencing using a MiSeq system and the whole-genome phylogenetic tree was conducted based on the maximum likelihood method. The outbreak lasted from January 27 to February 6, 2020, and 108 students developed fever, among whom 60 (55.56%) cases were diagnosed with HAdV-55 infection in the laboratory using real-time PCR and 56 cases were hospitalized. All the confirmed cases had a fever and 11 cases (18.33%) presented with a fever above 39°C. Other main clinical symptoms included sore throat (43.33%) and headache (43.33%). We obtained and assembled the full genome of one isolate, BJ-446, with 34 761 nucleotides in length. HAdV-55 isolate BJ-446 was 99.85% identical to strain QS-DLL, which was the first HAdV-55 strain in China isolated from an ARD outbreak in Shanxi in 2006. One and four amino acid mutations were observed in the hexon gene and the coding region of L2 pV 40.1 kDa protein, respectively. We identified the first HAdV-55 infection associated with the ARD outbreak in Beijing since the emergence of COVID-19. The study suggests that improved surveillance of HAdV is needed, although COVID-19 is still prevalent in the world.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , COVID-19 , Infecções Respiratórias , Infecções por Adenovirus Humanos/epidemiologia , Aminoácidos , Pequim/epidemiologia , COVID-19/epidemiologia , China/epidemiologia , Surtos de Doenças , Febre/epidemiologia , Humanos , Nucleotídeos , Filogenia , Infecções Respiratórias/epidemiologia
13.
Front Microbiol ; 12: 779749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880847

RESUMO

Salmonella contamination of eggs and egg shells has been identified as a public health problem worldwide. Here, we reported an outbreak of severe gastrointestinal symptoms caused by Salmonella enterica serovar Enteritidis (S. enteritidis) in China. We evaluated the outbreak by using epidemiological surveys, routine laboratory testing methods, and whole genome sequencing (WGS). This outbreak occurred in a canteen in Beijing, during March 9-11, 2021, 225 of the 324 diners who have eaten at the canteen showed gastrointestinal symptoms. The outbreak had characteristical epidemiological and clinical features. It caused a very high attack rate (69.4%) in a short incubation time. All patients developed diarrhea and high fever, accompanied by abdominal pain (62.3%), nausea (50.4%), and vomiting (62.7%). The average frequency of diarrhea was 12.4 times/day, and the highest frequency of diarrhea was as high as 50 times/day. The average fever temperature was 39.4°C, and the highest fever temperature was 42°C. Twenty strains of S. enteritidis were recovered, including 19 from the patients samples, and one from remained egg fried rice. Antibiotic susceptibility test showed that the 20 outbreak strains all had the same resistance pattern. PFGE results demonstrated that all 20 strains bore completely identical bands. Phylogenetic analysis based on WGS revealed that all 20 outbreak strains were tightly clustered together. So the pathogenic source of this food poisoning incident may was contaminated egg fried rice. Resistance gene analysis showed that the outbreak strains are all multi-drug resistant strains. Virulence gene analysis indicated that these outbreak strains carried a large number of virulence genes, including 2 types of Salmonella pathogenicity islands (SPI-1 and SPI-2). Other important virulence genes were also carried by the outbreak strains, such as pefABCD, rck and shdA. And the shdA gene was not in other strains located in the same evolutionary branch as the outbreak strain. We speculated that this is a significant reason for the serious symptoms of gastroenteritis in this outbreak. This outbreak caused by S. enteritidis suggested government should strengthen monitoring of the prevalence of outbreak clone strains, and take measures to mitigate the public health threat posed by contaminated eggs.

14.
Virol J ; 18(1): 203, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635129

RESUMO

BACKGROUND: Chikungunya fever, caused by the Chikungunya virus (CHIKV), has become a major global health concern, causing unexpected large outbreaks in Africa, Asia, Europe, and the Americas. CHIKV is not indigenous to China, and its origin in the country is poorly understood. In particular, there is limited understanding of the recent global spread of CHIKV in the context of the CHIKV epidemic. METHODS: Here we investigated a novel Chikungunya patient who came from Myanmar to China in August, 2019. Direct genome sequencing was performed via combined MinION sequencing and BGISEQ-500 sequencing. A complete CHIKV genome dataset, including 727 CHIKV genomes retrieved from GenBank and the genome sequenced in this study, was constructed. An updated and comprehensive phylogenetic analysis was conducted to understand the virus's origin, evolution, transmission routes and genetic adaptation. RESULTS: All globally distributed CHIKV genomes were divided into West Africa, East/Central/South African and Asian genotypes. The genome sequenced in this study was located in the Indian Ocean lineage, and was closely related to a strain isolated from an Australian patient who returned from Bangladesh in 2017. A comprehensive phylogenetic analysis showed that the Chinese strains mainly originated from the Indian subcontinent and Southeast Asia. Further analyses indicated that the Indian subcontinent and Southeast Asia may act as major hubs for the recent global spread of CHIKV, leading to multiple outbreaks and epidemics. Moreover, we identified 179 distinct sites, including some undescribed sites in the structural and non-structural proteins, which exhibited apparent genetic variations associated with different CHIKV lineages. CONCLUSIONS: Here we report a novel CHIKV isolate from a chikungunya patient who came from Myanmar to China in 2019, and summarize the source and evolution of Chinese CHIKV strains. Our present findings provide a better understanding of the recent global evolution of CHIKV, highlighting the urgent need for strengthened surveillance against viral diversity.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Sudeste Asiático/epidemiologia , Austrália , Surtos de Doenças , Humanos , Filogenia
15.
Front Med (Lausanne) ; 8: 735779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650998

RESUMO

Objectives: To data, no patients with obvious epidemiological relationship co-infected with SARS-CoV-2 and other pathogens have been reported. Here, we investigated 10 patients caused by co-infection with SARS-CoV-2 and human adenovirus (HAdV), resulting in third-generation transmission. Materials and Methods: From Jan 15, 2020, we enrolled 10 patients with pneumonia in Hunan Province, China. Epidemiological, clinical, and laboratory investigation results from these patients were analyzed. An epidemiological investigation was performed to assess whether patient infections were linked using conventional methods and metagenomic sequencing. Results: The presence of co-infection with SARS-CoV-2 and HAdV was determined via RT-PCR and metagenomic sequencing. Phylogenetic analysis revealed that SARS-CoV-2 and HAdV genomes clustered together, with similar genetic relationships. The first patient likely became co-infected during meetings or travel in Wuhan. The patient transmitted the virus via dinners and meetings, which resulted in four second-generation cases. Then, a second-generation case transmitted the virus to her family members or relatives via presymptomatic transmission. Conclusions: This study described an example of co-infection with SARS-CoV-2 and HAdV in pneumonia patients, which caused third-generation cases and inter-regional transmission via meetings, household interactions, and dinner parties. We also observed the persistent and presymptomatic transmission of co-infection, which has the potential to make the continued control of the COVID-19 pandemic challenging. Continuous surveillance is needed to monitor the prevalence, infectivity, transmissibility, and pathogenicity of SARS-CoV-2 co-infection with other pathogens to evaluate its real risk.

16.
MAbs ; 13(1): 1955812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34420474

RESUMO

Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory tract infections resulting in medical intervention and hospitalizations during infancy and early childhood, and vaccination against RSV remains a public health priority. The RSV F glycoprotein is a major target of neutralizing antibodies, and the prefusion stabilized form of F (DS-Cav1) is under investigation as a vaccine antigen. AM14 is a human monoclonal antibody with the exclusive capacity of binding an epitope on prefusion F (PreF), which spans two F protomers. The quality of recognizing a trimer-specific epitope makes AM14 valuable for probing PreF-based immunogen conformation and functionality during vaccine production. Currently, only a low-resolution (5.5 Å) X-ray structure is available of the PreF-AM14 complex, revealing few reliable details of the interface. Here, we perform complementary structural studies using X-ray crystallography and cryo-electron microscopy (cryo-EM) to provide improved resolution structures at 3.6 Å and 3.4 Å resolutions, respectively. Both X-ray and cryo-EM structures provide clear side-chain densities, which allow for accurate mapping of the AM14 epitope on DS-Cav1. The structures help rationalize the molecular basis for AM14 loss of binding to RSV F monoclonal antibody-resistant mutants and reveal flexibility for the side chain of a key antigenic residue on PreF. This work provides the basis for a comprehensive understanding of RSV F trimer specificity with implications in vaccine design and quality assessment of PreF-based immunogens.


Assuntos
Anticorpos Monoclonais/ultraestrutura , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/química , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/ultraestrutura , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Sítios de Ligação de Anticorpos , Células CHO , Cricetulus , Microscopia Crioeletrônica , Cristalografia por Raios X , Epitopos , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Mutação , Conformação Proteica , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/patogenicidade , Relação Estrutura-Atividade , Desenvolvimento de Vacinas , Proteínas Virais de Fusão/genética
17.
J Alzheimers Dis ; 82(3): 1345-1356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151809

RESUMO

BACKGROUND: Elevated free fatty acid (FFA) induces lipotoxicity, attributed to diabetes and cognitive decline. Sterol regulatory element-binding protein-1c (SREBP-1c) regulates lipid metabolism. OBJECTIVE: We investigated the roles of FFA in mild cognitive impairment (MCI) of type 2 diabetes mellitus (T2DM) patients and determine its association with rs11868035 polymorphism. METHODS: We recruited 191 Chinese T2DM patients into two groups through Montreal Cognitive Assessment. Demographic and clinical data were collected, multiple domain cognitive functions were tested, plasma FFA levels were measured through ELISA, and SREBP-1c rs11868035 genotype was detected using the Seqnome method. RESULTS: In comparison with the healthy-cognition group (n = 128), the MCI group (n = 63) displayed lower glucose control (p = 0.012) and higher plasma FFA level (p = 0.021), which were independent risk factors of MCI in T2DM patients in multivariate regression analysis (OR = 1.270, p = 0.003; OR = 1.005, p = 0.036). Additionally, the plasma FFA levels of MCI patients were positively correlated with Stroop color word test-C time scores (r = 0.303, p = 0.021) and negatively related to apolipoprotein A1 levels (r = -0.311, p = 0.017), which are associated positively with verbal fluency test scores (r = 0.281, p = 0.033). Both scores reflected attention ability and executive function. Moreover, the G allele carriers of rs11868035 showed higher digit span test scores than non-carriers in T2DM patients (p = 0.019) but without correlation with plasma FFA levels. CONCLUSION: In T2DM, elevated plasma level of FFA, when combined with lower apolipoprotein A1 level portends abnormal cholesterol transport, were susceptible to early cognitive impairment, especially for attention and execution deficits. The G allele of SREBP-1c rs11868035 may be a protective factor for memory.


Assuntos
Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Suscetibilidade a Doenças/sangue , Ácidos Graxos não Esterificados/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , China/epidemiologia , Disfunção Cognitiva/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Suscetibilidade a Doenças/diagnóstico , Suscetibilidade a Doenças/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
18.
Front Aging Neurosci ; 13: 619916, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054500

RESUMO

BACKGROUND: Abnormal cholesterol metabolism is common in type 2 diabetes mellitus (T2DM) and causes dementia. Cholesterol 24S-hydroxylase (CYP46A1) converts cholesterol into 24S-hydroxycholesterol (24-OHC) and maintains cholesterol homeostasis in the brain. OBJECTIVE: This study aimed to investigate the roles of 24-OHC and the CYP46A1 (rs754203) polymorphism in patients with T2DM and mild cognitive impairment (MCI). METHODS: A total of 193 Chinese patients with T2DM were recruited into two groups according to the Montreal Cognitive Assessment (MoCA). Demographic and clinical data were collected, and neuropsychological tests were conducted. Enzyme-linked immunosorbent assay (ELISA) and Seqnome method were used to detect the concentration of plasma 24-OHC and the CYP46A1 rs754203 genotype, respectively. RESULTS: Compared with 118 healthy cognition participants, patients with MCI (n = 75) displayed a higher plasma level of 24-OHC and total cholesterol concentration (all p = 0.031), while no correlation was found between them. In the overall diabetes population, the plasma level of 24-OHC was negatively correlated with MoCA (r = -0.150, p = 0.039), and it was further proved to be an independent risk factor of diabetic MCI (OR = 1.848, p = 0.001). Additionally, patients with MCI and the CC genotype of CYP46A1 rs754203 showed the highest plasma level of 24-OHC even though the difference was not statistically significant, and they obtained low scores in both the verbal fluency test and Stroop color and word test A (p = 0.008 and p = 0.029, respectively). CONCLUSION: In patients with T2DM, high plasma level of 24-OHC and the CC genotype carrier of CYP46A1 rs754203 may portend a high risk of developing early cognitive impairment, including attention and executive deficits.

19.
PLoS Pathog ; 16(11): e1008943, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137810

RESUMO

Respiratory syncytial virus (RSV) is a global public health burden for which no licensed vaccine exists. To aid vaccine development via increased understanding of the protective antibody response to RSV prefusion glycoprotein F (PreF), we performed structural and functional studies using the human neutralizing antibody (nAb) RSB1. The crystal structure of PreF complexed with RSB1 reveals a conformational, pre-fusion specific site V epitope with a unique cross-protomer binding mechanism. We identify shared structural features between nAbs RSB1 and CR9501, elucidating for the first time how diverse germlines obtained from different subjects can develop convergent molecular mechanisms for recognition of the same PreF site of vulnerability. Importantly, RSB1-like nAbs were induced upon immunization with PreF in naturally-primed cattle. Together, this work reveals new details underlying the immunogenicity of site V and further supports PreF-based vaccine development efforts.


Assuntos
Anticorpos Antivirais/imunologia , Epitopos/imunologia , Imunogenicidade da Vacina/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Bovinos , Cristalografia por Raios X , Humanos , Imunização , Modelos Estruturais
20.
Front Neurosci ; 14: 743, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013281

RESUMO

BACKGROUND: Low-density lipoprotein receptor-related protein 1 (LRP1) is involved in cerebral glucose metabolism and amyloid-ß clearance. This study aimed to investigate the pathogenetic roles of LRP1 and its rs1799986 polymorphism in mild cognitive impairment (MCI) among patients with type 2 diabetes mellitus (T2DM). METHODS: A total of 166 Chinese patients with T2DM were enrolled and divided into two groups according to Montreal Cognitive Assessment (MoCA) scores. Neuropsychological tests were performed. Soluble LRP1 (sLRP1) levels were assessed using enzyme-linked immunosorbent assay, and the genotype of LRP1 rs1799986 was detected using the Sequenom method. RESULTS: Diabetic patients with MCI (n = 60) exhibited significantly lower plasma sLRP1 levels (p = 0.033) and worse glucose control (p = 0.009) than the healthy cognition controls (n = 106). Multivariate regression analysis revealed plasma sLRP1 levels [odds ratio (OR) = 0.971, p = 0.005] and HbA1c (OR = 1.298, p = 0.003) as a risk factor for MCI in diabetic patients, in addition to insulin use and hypertension. However, there was no association between plasma sLRP1 levels and HbA1c. After adjusting for age, sex, and education level, plasma sLRP1 levels in the MCI group were negatively correlated with Stroop Color Word Test B number (r = -0.335, p = 0.011), which represents selective attention, cognitive flexibility, and processing speed. Additionally, patients with T2DM carrying the T allele of LRP1 rs1799986 showed higher Auditory Verbal Learning Test (AVLT) delayed recall scores (p = 0.025). CONCLUSION: Decreased plasma sLRP1 levels are associated with MCI, particularly with attention dysfunction, in patients with T2DM. Moreover, the T allele of LRP1 rs1799986 may decrease susceptibility to MCI. Further studies with large cohorts should be designed to elucidate the roles of LRP1 in hyperglycemia-induced cognitive decline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA