Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400487, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946221

RESUMO

Hydrogen isotopic effect, as the key to revealing the origin of Earth's water, arises from the H/D mass difference and quantum dynamics at the transition state of reaction. The ion-molecule charge-exchange reaction between water (H2O/D2O) and argon ion (Ar+) proceeds spontaneously and promptly, where there is no transition-state or intermediate complex. In this energetically resonant process, we find an inverse kinetic isotope effect (KIE) leading to the higher charge transfer rate for D2O, by the velocity map imaging measurements of H2O+/D2O+ products. Using the average dipole orientation capture model, we estimate the orientation angles of C2v axis of H2O/D2O relative to the Ar+ approaching direction and attribute to the difference of stereodynamics. According to the long-distance Landau-Zener charge transfer model, this inverse KIE could be also attributed to the density-of-state difference of molecular bending motion between H2O+ and D2O+ around the resonant charge transfer.

2.
J Phys Chem A ; 128(19): 3821-3829, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38714336

RESUMO

The reactive collision between He+ and CO2 plays an important role in substance evolutions of the planetary CO2-rich atmosphere. Using a three-dimensional ion velocity map imaging technique, we investigate the low-energy ion-molecule reactions He+ + CO2 → He + CO2+/He + CO+ + O/He + CO + O+. The velocity images of the products CO+ and O+ of dissociative charge-exchange reactions are distinctly different from those of charge-exchange product CO2+. The remarkable features of stereodynamics are observed in the dissociative charge-exchange reaction and are attributed to the spatial alignment of the initially random target CO2 during the He+ approach. Branching ratios of different channels of dissociative charge exchange are further obtained with the Doppler kinematics model, indicating a high preference for the energy-resonant channel.

3.
J Phys Chem Lett ; 15(21): 5607-5611, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38758196

RESUMO

Dissociative electron attachment (DEA) is widely believed to play a high-profile role in ionizing radiation damages of bioorganic molecules, and its fundamentals are mainly learned from the gas-phase studies. However, the DEA process in aqueous solution is still in debate. Here we provide experimental evidence about the DEA processes of liquid methanol by using electron-impact-time-delayed mass spectrometry. In contrast to the gas- and solid-phase DEAs, methoxide ion CH3O- is the predominant product from the liquid interface. Furthermore, this anion can be produced with both the primary low-energy electrons and the inelastically scattered and secondary low-energy electrons. On the contrary, the primary low-energy electrons in the liquid bulk are more likely to be solvated, rather than directly participating in the DEA process. Our study provides new insights into radiation chemistry, particularly of bioorganic relevance.

4.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38251801

RESUMO

Anionic carbonate CO3- has been found in interstellar space and the Martian atmosphere, but its production mechanism is in debate so far. To mimic the irradiation-induced reactions on icy micrograins in the Martian atmosphere and the icy shell of interstellar dust, here we report a laboratory investigation on the dissociative electron attachments to the molecular clusters of CO2. We find that anionic species (CO2)n-1O- and (CO2)n- (n = 2, 3, 4) are produced in the concerted reaction and further stabilized by the evaporative cooling after the electron attachment. We further propose a dynamics model to elucidate their competitive productions: the (CO2)n- yields survive substantially in the molecular evaporative cooling at the lower electron attachment energy, while the reactions leading to (CO2)n-1O- are favored at the higher attachment energy. This work provides new insights into physicochemical processes in CO2-rich atmospheres and interstellar space.

5.
Commun Chem ; 6(1): 267, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057399

RESUMO

The prebiotic mechanism to produce molecular oxygen (O2) in carbon dioxide (CO2)-rich planetary atmospheres is of great importance in understanding astrochemical reactions and is potentially relevant to the origin of life on Earth. Here, we demonstrate that, aside from the direct productions of O2 by photodissociation and dissociative electron attachment, the low-energy ion-molecule reaction between cationic helium in solar winds and molecular CO2 is a noticeable mechanism. Branching ratios of the reaction channels are determined, and their absolute cross-sections are estimated accordingly. The present findings represent a further, indispensable step towards fully understanding the origins of atmospheric O2.

6.
J Chem Phys ; 158(18)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37154273

RESUMO

A resonant system consisting of an excess electron and a closed-shell atom or molecule, as a temporary negative ion, is usually in doublet-spin states that are analogous to bright states of photoexcitation of the neutral. However, anionic higher-spin states, noted as dark states, are scarcely accessed. Here, we report the dissociation dynamics of CO- in dark quartet resonant states that are formed by electron attachments to electronically excited CO (a3Π). Among the dissociations to O-(2P) + C(3P), O-(2P) + C(1D), and O-(2P) + C(1S), the latter two are spin-forbidden in the quartet-spin resonant states of CO-, while the first process is preferred in 4Σ- and 4Π states. The present finding sheds new light on anionic dark states.

7.
J Phys Chem Lett ; 14(2): 598-603, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36633551

RESUMO

Experimental studies of the dynamics near the molecular dissociation threshold are frequently frustrated, due to the small cross sections and the demand for identification of close-lying electronic states or nuclear motions with multiple degrees of freedom. Using the high-resolution anion velocity map imaging technique, here we report a dynamics study of the dissociations of anionic nitrogen dioxide in low-lying resonant states formed by electron attachment [e- + NO2 (X2A1) → NO2- → NO (X2Π) + O- (2P)]. The long-term puzzling issues about the near-threshold dissociations of NO2- are settled. We suggest that three low-lying resonant states (1B1, 3B1, and 3B2) of NO2- contribute to the production of O- at attachment energies of <5 eV. Furthermore, B1 and B2 symmetries of the resonant states lead to different anisotropies of the O- angular distribution. At the relatively high electron attachment energies, a prompt fragmentation in the molecular bent conformation competes with an indirect dissociation in the straightened conformation.

8.
Acc Chem Res ; 55(21): 3071-3079, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36251270

RESUMO

Reaction dynamics in the liquid-vapor interface is one of the crucial physical sciences but is still starving for in-depth exploration. It is challenging to selectively detect the interfacial species or the yields of chemical reaction therein, meanwhile shielding or reducing the interference from the vapor and liquid bulk. Mass spectrometry is a straightforward method but is also frustrated in such a selective detection. Using a liquid microjet in combination with a pulsed electron beam, a linear time-of-flight mass spectrometer, and a quadrupole mass filter, we recently innovated time-delayed mass spectrometry for investigations of the liquid-vapor interface. In this Account, we illustrate how this unique method succeeds in disentangling different sources, i.e., the vapor and liquid-vapor interface, of the ionic yields of the electron impacts with a liquid beam of alcohol in vacuum. These achievements are basically attributed to the application of an onion-peeling strategy in the ion detection. Concretely, the microsecond time scale of molecular volatilization can be resolved well by tuning the delay time between the nanosecond pulses of incident electron bunch and ion attractor. First, the specific orientation of the interfacial molecule, i.e., a well-known fact about the hydrophobic hydrocarbon groups pointing outside the liquid surface of alcohol, is validated again. More importantly, the dynamic features of time-delayed mass spectra, in particular, for the ionic yields from the liquid-vapor interface, are rationalized explicitly. Moreover, we demonstrate evidence of in situ molecular dimers in the liquid-vapor interface of 1-propanol. As the first example of electron-induced reaction in the liquid-vapor interface, dimethyl ether can be synthesized in the liquid methanol interface due to local interfacial acidification by high-energy electron impacts. On the contrary, the low energy electron can lead to local basicity through dissociative electron attachment (DEA). Besides the primary low-energy electrons, the low-energy secondary and inelastically scattered electrons in the higher-energy impacts of the primary electrons can also participate in the DEA process. In contrast to the gas- or solid-phase DEAs, that in the liquid-vapor interface shows distinct differences in both the types and efficiencies of anionic products. With these and efforts in the future, we develop a molecular-level understanding of how the chemical reactions happen in the liquid-vapor interface.


Assuntos
Elétrons , Metanol , Íons , Metanol/química , Ânions , Gases
9.
J Phys Chem Lett ; : 5220-5225, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670607

RESUMO

Ether synthesis from alcohol is known to be acid-catalyzed. Such a process could happen in the acidified liquid of alcohol, but hitherto lacking the experimental evidence. Here we demonstrate that dimethyl ether is spontaneously synthesized in the liquid-vapor interface of pure methanol after ionizing radiation with electrons. Using time-delayed tandem mass spectrometry measurements in combination with theoretical calculations, we further confirm that the protonated dimethyl ether is produced from the ion-molecule reactions not only in the dense vapor above the interface but also within the molecular clusters of the acidic interface. Our finding provides a convincing piece of evidence about the liquid-vapor interfacial acidification by the electron-impact ionizing radiation, exhibiting a promising way to control the chemical reactions in the liquid surface.

10.
J Phys Chem A ; 126(22): 3543-3548, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35619587

RESUMO

Dissociative electron attachments via the lowest shape resonant state 2Πu of CO2-, e- + CO2 → O- + CO, are investigated with our high-resolution anion velocity map imaging apparatus. The production efficiency curve of O- obtained in this work is consistent with those reported previously. The forward-backward asymmetric distribution superimposed on the isotopic background is observed in the time-sliced velocity image of O- yield, implying that the dissociation of CO2-(2Πu) proceeds through a combinational motion of bond stretching and bending. Thereby, the coproduct CO is proposed to be in the rovibrational states. The long-standing arguments about the dissociation dynamics of CO2-(2Πu) are settled.

11.
J Phys Chem Lett ; 12(30): 7127-7133, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34296886

RESUMO

Long-distance charge-dipole attraction between atomic ion and randomly oriented polar molecule potentially makes the molecular orientation, which profoundly influences the products' kinetics of collisional reaction. Using the three-dimensional ion velocity map imaging technique, here we report a collision-energy dependent stereodynamics of dissociative charge exchange reaction Ar+ + CO → Ar + O + C+ in a range of 7.46-9.97 eV. At the lowest collision energy, the most C+ products are forward-scattered and are along the collision axis and are attributed to three different dissociation channels including the predominant one experiencing the rotating intermediate ArC+. At the high collision energies, the remarkably diffusive distribution of C+ arises from the prompt dissociation of the rebounded CO+. The different dynamic processes arising from the nearly collinear collision are elaborated explicitly on the basis of the data analyses using the Doppler kinetics models.

12.
J Chem Phys ; 154(23): 234303, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34241253

RESUMO

Molecular electronic or vibrational states can be superimposed temporarily in an extremely short laser pulse, and the superposition-state transients formed therein receive much attention, owing to the extensive interest in molecular fundamentals and the potential applications in quantum information processing. Using the crossed-beam ion velocity map imaging technique, we disentangle two distinctly different pathways leading to the forward-scattered N2 + yields in the large impact-parameter charge transfer from low-energy Ar+ to N2. Besides the ground-state (X2Σg +) N2 + produced in the energy-resonant charge transfer, a few slower N2 + ions are proposed to be in the superpositions of the X2Σg +-A2Πu and A2Πu-B2Σu + states on the basis of the accidental degeneracy or energetic closeness of the vibrational states around the X2Σg +-A2Πu and A2Πu-B2Σu + crossings in the non-Franck-Condon region. This finding potentially shows a brand-new way to prepare the superposition-state molecular ion.

13.
J Phys Chem A ; 125(12): 2573-2580, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33755470

RESUMO

We report an ion velocity imaging study of the charge exchange reactions between Ar+ ion and trans-/cis-dichloroethylene in the collision energy range of 2.1-9.5 eV, and we find that the energy-resonant charge transfer plays a dominant role in the large impact-parameter reaction. The parent yields C2H2Cl2+ in the high-lying excited states are directly produced in the charge exchange reactions, while they prefer spontaneous fragmentations in photoionization. This significant difference indicates that the present charge exchange reactions are much slower than the photoelectron detachment. The structural relaxations of the target molecule are allowed in multiple dimensions of freedom during the charge transfer, which should be frequently observed for the charge exchange reactions with large molecules.

14.
J Phys Chem Lett ; 12(4): 1346-1351, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33504151

RESUMO

Stereodynamics of the collisional reaction between mutually aligned or oriented reactants has been a striking topic of chemical dynamics for decades. However, the stereodynamic aspects are scarcely revealed for the low-energy collision with a randomly oriented target. Here in the dissociative charge-exchange reaction between randomly oriented O2 and low-energy Ar+, we, using the three-dimensional ion velocity map imaging technique, clearly observe a linear alignment and a nearly isotropic distribution of the O+ yields along the collision axis. These observations are rationalized with the Doppler kinetic models in which the O2 bond is assumed to be parallel or unparallel to the collision axis of the large impact parameter collision. The linearly aligned O+, as the predominant yield, is produced in the parallel collision, while a rotating O2+, as the intermediate in the unparallel collision, leads to the isotropic distribution of O+.

15.
Commun Chem ; 4(1): 13, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36697555

RESUMO

The cyanide anion (CN-) has been identified in cometary coma, interstellar medium, planetary atmosphere and circumstellar envelopes, but its origin and abundance are still disputed. An isolated CN- is stabilized in the vibrational states up to ν = 17 of the electronic ground-state 1Σ+, but it is not thought to survive in the electronic or vibrational states above the electron autodetachment threshold, namely, in superexcited states. Here we report the direct observation of long-lived CN- yields of the dissociative electron attachment to cyanogen bromide (BrCN), and confirm that some of the CN- yields are distributed in the superexcited vibrational states ν ≥ 18 (1Σ+) or the superexcited electronic states 3Σ+ and 3Π. The triplet state can be accessed directly in the impulsive dissociation of BrCN- or by an intersystem transition from the superexcited vibrational states of CN-. The exceptional stability of CN- in the superexcited states profoundly influences its abundance and is potentially related to the production of other compounds in interstellar space.

16.
J Phys Chem Lett ; 11(21): 9110-9116, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33049137

RESUMO

State coupling certainly determines the topologic features of the molecular potential energy surface (PES) and potentially diversifies chemical reaction pathways. Here we report the new PESs of BrCN- in the low-lying electronic states that are distinctly different from the previous predictions in the short Br-CN bond region but validated by the high-resolution ion velocity imaging measurements of low-energy dissociative electron attachment (DEA) to BrCN. Besides the vibrating CN- ions produced in the fast Br-CN bond stretching motions, we confirm that the ro-vibrating CN- ions with a nearly isotropic angular distribution are produced by receiving a torque in the combinational motion of Br-CN bond bending and stretching. The latter process is closely related to the potential well of BrCN- at the first excited state A2Π3/2 that arises from the Π-Σ state couplings. Our findings not only suggest that the PESs of other anionic cyanogen halides are in dire need of reexamination but also show that ion velocity imaging of the DEA process is a powerful experimental method for evaluating the theoretical PESs of molecular anions.

17.
J Phys Chem Lett ; 11(18): 7510-7516, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32813525

RESUMO

Structural inhomogeneity of the liquid-vapor interface, such as the spatial orientation of molecular specific groups and the non-uniform distribution of hydrogen-bonded (HB) clusters, is crucial for understanding the physicochemical processes therein. Although the molecular orientation at the outermost layer was authenticated, to date, direct experimental evidence of the in situ existence of different-sized HB clusters, as a long-standing theoretical argument, is still lacking. Here we report time-delayed electron-impact tandem mass spectrometry, and its powerful ability to identify the local structures of the liquid-vapor interface of 1-propanol is demonstrated not only by mapping the molecular orientations both in the outermost layer and in the subsurface but also by validating the existence of the HB molecular dimers in the subsurface by detecting their protonated ions. We further distinguish two different sources of the protonated dimer: the gas-phase protonation of the neutral dimer that evaporates in advance and the time-lag evaporation of the protonated dimer produced in the subsurface. This methodology is a brand-new way to explore the microstructures and the electron-driven chemical reactions in different local regions of the liquid-vapor interface.

18.
J Chem Phys ; 153(2): 024301, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668910

RESUMO

Vibrationally resolved photoemission spectra of the electronic-state transitions C3Πu → B3Πg of N2 and b3Σ+ → a3Π of CO following low-energy electron impacts are measured with a crossed-beam experimental arrangement. The absolute cross sections of C3Πu (ν') → B3Πg (ν″) of N2 are presented for the vibrational state-to-state transitions (ν',ν″) = (0,0), (0,1), (1,0), (1,2), and (2,1). The excitation cross sections of the metastable state C3Πu of N2 show the maxima at the electron-impact energies 14.10 (ν' = 0) eV and 14.50 (ν' = 1) eV, which are potentially related to the core-excited vibrational Feshbach resonant state 2Σu + of N2 - formed by electron attachment. The absolute cross sections of b3Σ+ (ν' = 0) → a3Π (ν″ = 0, 1, 2, 3, 4) of CO are given by the calibrations with those of N2 measured in this work. Besides the maximum excitation cross section 5.85 × 10-18 cm2 at 10.74 eV of the CO b3Σ+ (ν' = 0) state, some fine structures on the excitation function profile are attributed to different shapes and Feshbach resonant states of CO- formed by electron attachment, while the others arise from the direct electron-impact excitation. Some discrepancies, particularly for N2, between the present data and the results available in the literature studies arise from different experimental techniques and data-processing procedures. Furthermore, contributions of physical processes such as wave-packet evolution and non-Franck-Condon dynamics are highlighted here.

19.
J Phys Chem A ; 124(17): 3358-3363, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32264677

RESUMO

Ion-molecule charge-exchange reactions Ar+ + CO → Ar + CO+ at the center-of-mass collision energies of 4.40, 6.40, and 8.39 eV are investigated using ion velocity map imaging technique. Although multiple electronically excited states of CO+ are accessed, the population of CO+ at the A2Π state is predominant in the present collision-energy range. In contrast to our previous study for NO, but similar to the case of O2, the forward-scattered CO+ yields show a broader angular distribution at the higher collision energy. Typically, the Franck-Condon-region charge transfer, energy resonant charge transfer, and intimate collision are three different mechanisms in which the intimate collision experiences an intermediate complex, and this mechanism usually plays an essential role in the thermal-energy reactions. However, the present observations indicate that this mechanism, concerning the intermediate (Ar-CO)+, is still of utmost importance in a relatively high collision-energy range.

20.
J Chem Phys ; 152(8): 084305, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32113364

RESUMO

Molecular concerted three-body dissociation is a fast process, but still can be classified into synchronous and asynchronous pathways. It is challenging in experiments to evaluate different contributions of the aforementioned mechanisms. Here, we report an experimental identification of the synchronous and asynchronous concerted three-body dissociations of temporary negative ion CH2F2 - at an electron-molecule resonant state formed by electron attachment. The synchronous-asynchronous branching ratios indicate that the asynchronous process is predominant although the synchronous contribution is slightly enhanced with the increase in the electron attachment energy. This study provides two intuitive pictures of the concerted three-body dissociations, in particular for the nonequivalent-bond cleavages of a polyatomic molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA