Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D1265-D1275, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953279

RESUMO

First released in 2006, DrugBank (https://go.drugbank.com) has grown to become the 'gold standard' knowledge resource for drug, drug-target and related pharmaceutical information. DrugBank is widely used across many diverse biomedical research and clinical applications, and averages more than 30 million views/year. Since its last update in 2018, we have been actively enhancing the quantity and quality of the drug data in this knowledgebase. In this latest release (DrugBank 6.0), the number of FDA approved drugs has grown from 2646 to 4563 (a 72% increase), the number of investigational drugs has grown from 3394 to 6231 (a 38% increase), the number of drug-drug interactions increased from 365 984 to 1 413 413 (a 300% increase), and the number of drug-food interactions expanded from 1195 to 2475 (a 200% increase). In addition to this notable expansion in database size, we have added thousands of new, colorful, richly annotated pathways depicting drug mechanisms and drug metabolism. Likewise, existing datasets have been significantly improved and expanded, by adding more information on drug indications, drug-drug interactions, drug-food interactions and many other relevant data types for 11 891 drugs. We have also added experimental and predicted MS/MS spectra, 1D/2D-NMR spectra, CCS (collision cross section), RT (retention time) and RI (retention index) data for 9464 of DrugBank's 11 710 small molecule drugs. These and other improvements should make DrugBank 6.0 even more useful to a much wider research audience ranging from medicinal chemists to metabolomics specialists to pharmacologists.


Assuntos
Bases de Conhecimento , Metabolômica , Espectrometria de Massas em Tandem , Bases de Dados Factuais , Interações Alimento-Droga
2.
Pharmacol Rev ; 74(3): 506-551, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710135

RESUMO

Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal ß -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.


Assuntos
Carnitina , Resistência à Insulina , Biomarcadores , Carnitina/análogos & derivados , Carnitina/química , Carnitina/metabolismo , Carnitina/uso terapêutico , Ácidos Graxos/metabolismo , Humanos , Resistência à Insulina/fisiologia
3.
Nucleic Acids Res ; 50(W1): W115-W123, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35536252

RESUMO

BioTransformer 3.0 (https://biotransformer.ca) is a freely available web server that supports accurate, rapid and comprehensive in silico metabolism prediction. It combines machine learning approaches with a rule-based system to predict small-molecule metabolism in human tissues, the human gut as well as the external environment (soil and water microbiota). Simply stated, BioTransformer takes a molecular structure as input (SMILES or SDF) and outputs an interactively sortable table of the predicted metabolites or transformation products (SMILES, PNG images) along with the enzymes that are predicted to be responsible for those reactions and richly annotated downloadable files (CSV and JSON). The entire process typically takes less than a minute. Previous versions of BioTransformer focused exclusively on predicting the metabolism of xenobiotics (such as plant natural products, drugs, cosmetics and other synthetic compounds) using a limited number of pre-defined steps and somewhat limited rule-based methods. BioTransformer 3.0 uses much more sophisticated methods and incorporates new databases, new constraints and new prediction modules to not only more accurately predict the metabolic transformation products of exogenous xenobiotics but also the transformation products of endogenous metabolites, such as amino acids, peptides, carbohydrates, organic acids, and lipids. BioTransformer 3.0 can also support customized sequential combinations of these transformations along with multiple iterations to simulate multi-step human biotransformation events. Performance tests indicate that BioTransformer 3.0 is 40-50% more accurate, far less prone to combinatorial 'explosions' and much more comprehensive in terms of metabolite coverage/capabilities than previous versions of BioTransformer.


Assuntos
Biologia Computacional , Xenobióticos , Humanos , Biologia Computacional/métodos , Biotransformação , Bases de Dados Factuais , Estrutura Molecular , Xenobióticos/metabolismo
4.
Nucleic Acids Res ; 50(W1): W165-W174, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35610037

RESUMO

The CFM-ID 4.0 web server (https://cfmid.wishartlab.com) is an online tool for predicting, annotating and interpreting tandem mass (MS/MS) spectra of small molecules. It is specifically designed to assist researchers pursuing studies in metabolomics, exposomics and analytical chemistry. More specifically, CFM-ID 4.0 supports the: 1) prediction of electrospray ionization quadrupole time-of-flight tandem mass spectra (ESI-QTOF-MS/MS) for small molecules over multiple collision energies (10 eV, 20 eV, and 40 eV); 2) annotation of ESI-QTOF-MS/MS spectra given the structure of the compound; and 3) identification of a small molecule that generated a given ESI-QTOF-MS/MS spectrum at one or more collision energies. The CFM-ID 4.0 web server makes use of a substantially improved MS fragmentation algorithm, a much larger database of experimental and in silico predicted MS/MS spectra and improved scoring methods to offer more accurate MS/MS spectral prediction and MS/MS-based compound identification. Compared to earlier versions of CFM-ID, this new version has an MS/MS spectral prediction performance that is ∼22% better and a compound identification accuracy that is ∼35% better on a standard (CASMI 2016) testing dataset. CFM-ID 4.0 also features a neutral loss function that allows users to identify similar or substituent compounds where no match can be found using CFM-ID's regular MS/MS-to-compound identification utility. Finally, the CFM-ID 4.0 web server now offers a much more refined user interface that is easier to use, supports molecular formula identification (from MS/MS data), provides more interactively viewable data (including proposed fragment ion structures) and displays MS mirror plots for comparing predicted with observed MS/MS spectra. These improvements should make CFM-ID 4.0 much more useful to the community and should make small molecule identification much easier, faster, and more accurate.


Assuntos
Algoritmos , Metabolômica , Software , Espectrometria de Massas em Tandem , Computadores , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem/métodos , Internet
5.
Nucleic Acids Res ; 50(D1): D622-D631, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34986597

RESUMO

The Human Metabolome Database or HMDB (https://hmdb.ca) has been providing comprehensive reference information about human metabolites and their associated biological, physiological and chemical properties since 2007. Over the past 15 years, the HMDB has grown and evolved significantly to meet the needs of the metabolomics community and respond to continuing changes in internet and computing technology. This year's update, HMDB 5.0, brings a number of important improvements and upgrades to the database. These should make the HMDB more useful and more appealing to a larger cross-section of users. In particular, these improvements include: (i) a significant increase in the number of metabolite entries (from 114 100 to 217 920 compounds); (ii) enhancements to the quality and depth of metabolite descriptions; (iii) the addition of new structure, spectral and pathway visualization tools; (iv) the inclusion of many new and much more accurately predicted spectral data sets, including predicted NMR spectra, more accurately predicted MS spectra, predicted retention indices and predicted collision cross section data and (v) enhancements to the HMDB's search functions to facilitate better compound identification. Many other minor improvements and updates to the content, the interface, and general performance of the HMDB website have also been made. Overall, we believe these upgrades and updates should greatly enhance the HMDB's ease of use and its potential applications not only in human metabolomics but also in exposomics, lipidomics, nutritional science, biochemistry and clinical chemistry.


Assuntos
Bases de Dados Genéticas , Metaboloma/genética , Metabolômica/classificação , Humanos , Lipidômica/classificação , Espectrometria de Massas , Interface Usuário-Computador
6.
Data Brief ; 38: 107381, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34568531

RESUMO

One year after identifying the first case of the 2019 coronavirus disease (COVID-19) in Canada, federal and provincial governments are still struggling to manage the pandemic. Provincial governments across Canada have experimented with widely varying policies in order to limit the burden of COVID-19. However, to date, the effectiveness of these policies has been difficult to ascertain. This is partly due to the lack of a publicly available, high-quality dataset on COVID-19 interventions and outcomes for Canada. The present paper provides a dataset containing important, Canadian-specific data that is known to affect COVID-19 outcomes, including sociodemographic, climatic, mobility and health system related information for all 10 Canadian provinces and their health regions. This dataset also includes longitudinal data on the daily number of COVID-19 cases, deaths, and the constantly changing intervention policies that have been implemented by each province in an attempt to control the pandemic.

7.
Anal Chem ; 93(34): 11692-11700, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34403256

RESUMO

In the field of metabolomics, mass spectrometry (MS) is the method most commonly used for identifying and annotating metabolites. As this typically involves matching a given MS spectrum against an experimentally acquired reference spectral library, this approach is limited by the coverage and size of such libraries (which typically number in the thousands). These experimental libraries can be greatly extended by predicting the MS spectra of known chemical structures (which number in the millions) to create computational reference spectral libraries. To facilitate the generation of predicted spectral reference libraries, we developed CFM-ID, a computer program that can accurately predict ESI-MS/MS spectrum for a given compound structure. CFM-ID is one of the best-performing methods for compound-to-mass-spectrum prediction and also one of the top tools for in silico mass-spectrum-to-compound identification. This work improves CFM-ID's ability to predict ESI-MS/MS spectra from compounds by (1) learning parameters from features based on the molecular topology, (2) adding a new approach to ring cleavage that models such cleavage as a sequence of simple chemical bond dissociations, and (3) expanding its hand-written rule-based predictor to cover more chemical classes, including acylcarnitines, acylcholines, flavonols, flavones, flavanones, and flavonoid glycosides. We demonstrate that this new version of CFM-ID (version 4.0) is significantly more accurate than previous CFM-ID versions in terms of both EI-MS/MS spectral prediction and compound identification. CFM-ID 4.0 is available at http://cfmid4.wishartlab.com/ as a web server and docker images can be downloaded at https://hub.docker.com/r/wishartlab/cfmid.


Assuntos
Flavonas , Espectrometria de Massas em Tandem , Simulação por Computador , Metabolômica , Software
8.
J Chem Inf Model ; 61(6): 3128-3140, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34038112

RESUMO

In silico metabolism prediction is a cheminformatic task of autonomously predicting the set of metabolic byproducts produced from a specified molecule and a set of enzymes or reactions. Here, we describe a novel machine learned in silico cytochrome P450 (CYP450) metabolism prediction suite, called CyProduct, that accurately predicts metabolic byproducts for a specified molecule and a human CYP450 isoform. It includes three modules: (1) CypReact, a tool that predicts if the query compound reacts with a given CYP450 enzyme, (2) CypBoM, a tool that accurately predicts the "bond site" of the reaction (i.e., which specific bonds within the query molecule react with the CYP isoform), and (3) MetaboGen, a tool that generates the metabolic byproducts based on CypBoM's bond-site prediction. CyProduct predicts metabolic biotransformation products for each of the nine most important human CYP450 enzymes. CypBoM uses an important new concept called "bond of metabolism" (BoM), which extends the traditional "site of metabolism" (SoM) by specifying the information about the set of chemical bonds that is modified or formed in a metabolic reaction (rather than the specific atom). We created a BoM database for 1845 CYP450-mediated Phase I reactions, then used this to train the CypBoM Predictor to predict the reactive bond locations on substrate molecules. CypBoM Predictor's cross-validated Jaccard score for reactive bond prediction ranged from 0.380 to 0.452 over the nine CYP450 enzymes. Over variants of a test set of 68 known CYP450 substrates and 30 nonreactants, CyProduct outperformed the other packages, including ADMET Predictor, BioTransformer, and GLORY, by an average of 200% (with respect to Jaccard score) in terms of predicting metabolites. The CyProduct suite and the data sets are freely available at https://bitbucket.org/wishartlab/cyproduct/src/master/.


Assuntos
Sistema Enzimático do Citocromo P-450 , Software , Simulação por Computador , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Oxirredução
9.
J Chem Inf Model ; 58(6): 1282-1291, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29738669

RESUMO

In silico metabolism prediction requires first predicting whether a specific molecule will interact with one or more specific metabolizing enzymes, then predicting the result of each enzymatic reaction. Here, we provide a computational tool, CypReact, for performing this first task of reactant prediction. Specifically, CypReact takes as input an arbitrary molecule (specified as a SMILES string or a standard SDF file) and any one of the nine of the most important human cytochrome P450 (CYP450) enzymes-CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, or CYP3A4-and accurately predicts whether the query molecule will react with that given CYP450 enzyme. Tests of CypReact, conducted over a data set of 1632 molecules (each considered a "plausible" reactant) show that it is very effective, with a (cross-validation) AUROC (area under the receiver operating characteristic curve) of 0.83-0.92. We also show that CypReact performs significantly better than other reactant prediction tools such as ADMET Predictor and (a reactant-predicting extension of) SMARTCyp, whose average AUROCs are 0.75 and 0.53, respectively. We then applied the learned CypReact models to a previously unseen set of molecules and found that our CypReact did even better and still significantly surpassed the performance of SMARTCyp and ADMET Predictor. These results suggest that CypReact could be an important component of a suite of in silico metabolism prediction tools for accurately predicting the products of Phase I, Phase II, and microbial metabolism in humans. CypReact is available at https://bitbucket.org/Leon_Ti/cypreact .


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Preparações Farmacêuticas/metabolismo , Algoritmos , Simulação por Computador , Descoberta de Drogas , Humanos , Modelos Biológicos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA