RESUMO
Helicteres angustifolia L. (H. angustifolia), a well-known traditional Chinese medicine, has been demonstrated to have hypoglycemic activity. We found that the EtOAc extract of H. angustifolia (HAEF) showed stronger α-glucosidase inhibitory activity than that of positive control. Furthermore, the hypoglycemic activity of HAEF was evaluated in streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) rats. The results demonstrated that HAEF reduced the drinking quantity, feeding quantity, and controlled weight loss in diabetic rats. Besides, the fasting blood glucose (FBG), viscera index, and the area under time-blood glucose curve (AUC) were significantly decreased, and the oral glucose tolerance was also improved after 5 weeks. Then, the high-performance liquid chromatography with quadrupole time of flight tandem mass spectrometry (HPLC-Q-TOF-MS/MS) method was performed for qualitative analysis of the chemical constituents in HAEF. Twenty-one compounds were identified from in HAEF. Four compounds were further isolated from HAEF and subjected to α-glucosidase inhibition experiments. At the end, molecular docking was empolyed simulate the interaction of three compounds with α-glucosidase. This is the first report on major hypoglycaemic components has been identified in the roots of H. angustifolia. These findings provide a material basis for the use of H. angustifolia in the treatment of diabetes.
RESUMO
Protein glycosylation is involved in DNA damage. Recently, DNA damage has been connected with the pathogenesis of heart failure. Cell adhesion associated, oncogene regulated (CDON), considered as an N-linked glycoprotein, is a transmembrane receptor for modulating cardiac function. But the role of CDON and its glycosylation in DNA damage remains unknown. In this study, we found that the knockdown of CDON caused DNA double-strand breaks as indicated by an increase in phosphorylated histone H2AX (γH2AX) protein level, immunofluorescent intensity of γH2AX and tail DNA moment in H9c2 cardiomyocytes. Conversely, overexpression of CDON led to decreasing DNA damage induced by hydrogen peroxide (H2O2) and upregulating the expression of genes related to DNA repair pathways-homologous recombination (HR) and non-homologous end joining (NHEJ). Moreover, we expressed nine predicted N-glycosylation site mutants in H9c2 cells prior to treatment with H2O2. The results showed that mutation of N-glycosylation sites (N99Q, N179Q, and N870Q) increased the accumulation of DNA damage and downregulated the expression of HR-related genes, demonstrating that CDON N-glycosylation on DNA damage is site-specific and these specific N-glycan sites may regulate HR repair-related transcript abundance of genes. Our data highlight that N-glycosylation of CDON is critical to cardiomyocyte DNA lesion. It may uncover the potential strategies targeting DNA damage pathway in heart disease.
RESUMO
Abdominal aortic aneurysm (AAA) is a common but life-threatening vascular condition in men at an advanced age. However, the underlying mechanisms of age-increased incidence and mortality of AAA remain elusive. Here, we performed RNA sequencing (RNA-seq) of mouse aortas from males (young: 3-month, nâ =â 4 vs old: 23-month, nâ =â 4) and integrated with the data sets of human aortas (young: 20-39, nâ =â 47 vs old: 60-79 years, nâ =â 92) from GTEx project and the data set (GSE183464) for AAA to search for age-shifted aortic aneurysm genes, their relevant biological processes, and signaling pathways. Angiotensin II-induced AAA in mice was used to verify the critical findings. We found 1 001 genes transcriptionally changed with ages in both mouse and human. Most age-increased genes were enriched intracellularly and the relevant biological processes included mitochondrial function and translational controls, whereas the age-decreased genes were largely localized in extracellular regions and cell periphery and the involved biological processes were associated with extracellular matrix (ECM). Fifty-one were known genes for AAA and found dominantly in extracellular region. The common age-shifted vascular genes and known aortic aneurysm genes had shared functional influences on ECM organization, apoptosis, and angiogenesis. Aorta with angiotensin II-induced AAA exhibited similar phenotypic changes in ECM to that in old mice. Together, we present a conserved transcriptional signature for aortic aging and provide evidence that mitochondrial dysfunction and the imbalanced ribosomal homeostasis act likely as driven-forces for aortic aging and age-disturbed ECM is the substrate for developing AAA.
Assuntos
Envelhecimento , Aneurisma da Aorta Abdominal , Matriz Extracelular , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Animais , Matriz Extracelular/metabolismo , Camundongos , Masculino , Humanos , Idoso , Pessoa de Meia-Idade , Envelhecimento/genética , Adulto , Angiotensina II/farmacologia , Aorta Abdominal/patologia , Aorta Abdominal/metabolismo , Modelos Animais de DoençasRESUMO
Chilo sacchariphagus (Lepidoptera: Pyralidae) is an economically important sugarcane pest. Although numerous studies were conducted on the physiological responses in C. sacchariphagus, little is known regarding the genes regulating these physiological processes. Gene expression analysis by qRT-PCR can offer a significant indication for functional gene studies. To our knowledge, the reference genes of C. sacchariphagus have not been screened or evaluated, which hinders the functional gene study. In the present study, the stability of seven reference genes (ß-ACT, GAPDH, BTF3, 28S, RPL7, EF1α, and SDHA) was evaluated in C. sacchariphagus under different experimental conditions, including tissues (antenna, head, thorax, abdomen, leg, and wing), temperatures (4 °C, 25 °C, and 37 °C) and sexes (male and female), through RefFinder, which integrates four algorithms (Normfinder, BestKeeper, ΔCt method, and geNorm). The findings suggested that the combination of ß-ACT and RPL7 is ideal to analyze gene expressions in different tissues and at distinct temperatures, and EF1α and SDHA were suitable reference genes for comparing gene expressions between sexes. Finally, the expression profiles of CsacPBP1 gene were evaluated, and the outcomes further confirm the importance of selecting fitting reference genes for normalization of qRT-PCR data. This study represents the first kind in screening out suitable reference genes for gene expression analysis in C. sacchariphagus. Information from this study is poised to galvanize future inquiry into the gene expression of C. sacchariphagus, an economically important pest of sugarcane.
RESUMO
Citrus fruits possess a distinctive aroma and flavor, with Citrus aurantium Changshan-huyou (CACH) standing out due to their considerable edible and medicinal value. However, the volatile components (VOCs) in the CACH pericarp (CP) remain underexplored. In this study, gas chromatography-mass spectrometry (GC-MS) was utilized to qualitatively analyze VOCs in 27 CP samples across different growth stages. A total of 544 VOCs were identified, including 91 terpenoids. The types, quantities and distributions of VOCs were conducted. Detailed discussions on the major terpenoids in CP were also presented. A metabolomics approach combining multivariate statistical analysis with univariate analysis was employed for screening the differential metabolites. The study provides comprehensive insights into the VOCs in CP and citrus plants. Moreover, it delivers the first in-depth analysis of differential metabolites in CP throughout the entire CACH growth and development process, laying a foundation for ongoing research and development of the VOCs in CP.
RESUMO
Gut microbial products are known to act both locally within the intestine and get absorbed into circulation, where their effects can extend to numerous distant organ systems. Short-chain fatty acids (SCFA) are one class of metabolites produced by gut microbes during the fermentation of indigestible dietary fiber. They are now recognized as important contributors to how the gut microbiome influences extra-intestinal organ systems via the gut-lung, gut-brain, and other gut-organ axes throughout the host. SCFAs are absorbed from the colon, through intestinal tissue, into the portal vein (PV). They then pass through the liver, and are consumed in various organs such as the brain, muscle, adipose tissue, and lungs. SCFAs are most easily measured in the expelled fecal material however, more accurate measurements have been obtained from intra-colonic fecal contents. Here we propose that sampling PV and systemic circulating plasma of a single subject may be preferable for studying the absorption, transport, and systemic levels of SCFAs in mice. We present a new technique for efficient blood sampling from the PV and inferior vena cava (IVC) that allows for the collection of relatively large volumes of blood from the portal and systemic circulations. This is accomplished by ligating the PV, thereby allowing for the dilation or enlargement of the PV as it backfills from the mesenteric veins that drain into it. Using this method, we were able to improve the rate of successful collection as well as the total amount of blood collected (up to 0.3 mL from IVC and 0.5 mL from PV).
Assuntos
Microbioma Gastrointestinal , Veia Porta , Veia Cava Inferior , Animais , Camundongos , Veia Porta/metabolismo , Microbioma Gastrointestinal/fisiologia , Veia Cava Inferior/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Coleta de Amostras Sanguíneas/métodos , MasculinoRESUMO
Sarcopenia, a leading cause for global disability and mortality, is an age-related muscular disorder, characterized by accelerated muscle mass loss and functional decline. It is known that caloric restriction (CR), ketogenic diet or endurance exercise lessen sarcopenia and elevate circulating ß-hydroxybutyrate (ß-HB) levels. Whether the elevated ß-HB is essential to the reversal of sarcopenia, however, remains unclear. Here we show in both Caenorhabditis elegans and mouse models that an increase of ß-HB reverse myofiber atrophy and improves motor functions at advanced ages. ß-HB-induced histone lysine ß-hydroxybutyrylation (Kbhb) is indispensable for the reversal of sarcopenia. Histone Kbhb enhances transcription of genes associated with mitochondrial pathways, including oxidative phosphorylation, ATP metabolic process and aerobic respiration. This ultimately leads to improve mitochondrial integrity and enhance mitochondrial respiration. The histone Kbhb are validated in mouse model with CR. Thus, we demonstrate that ß-HB induces histone Kbhb, increases mitochondrial function, and reverses sarcopenia.
RESUMO
Nitric oxide (NO) / ß-Lapachone (Lap) combined therapy by causing oxidative stress is an effective tumor therapy strategy. Herein, a dual-responsive lipid nanoparticles (LNPs) LSNO for NO / Lap co-delivery were constructed from the zinc-coordinated lipid (DSNO(Zn)) and the hydrophobic drug Lap in the presence of helper lipids (DOPE and DSPE-PEG2000). The zinc-coordinated structure in LSNO might elevate the Zn2+ content in tumor cells, contributing to antioxidant imbalance. The fluorescent assays proved the light-triggered NO release and fluorescent self-reporting abilities of LSNO. In addition, the LNPs had good drug release behavior under high concentration of GSH, indicating the NO / drug co-delivery capacity. In vitro antitumor assays showed that the NO / Lap combination treatment group could induce more significant tumor cell growth inhibition and cell apoptosis than individual NO or Lap treatment. The following mechanism studies revealed that NO / Lap combination treatment led to distinct oxidative stress by producing reactive oxygen species (ROS) and peroxynitrite anion (ONOO-). On the other hand, the intracellular redox balance could be further disrupted by Lap-induced NADPH consumption and Zn2+ / NO-induced reductase activities downregulation, thus promoting the degree of cell damage. Besides, it was also found that NO and Lap could directly damage nuclear DNA and induce mitochondrial dysfunction, thereby leading to caspase-3 activation and tumor cell death. These results proved that LSNO could serve as a promising multifunctional tumor therapy platform.
Assuntos
Nanopartículas , Naftoquinonas , Óxido Nítrico , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio , Naftoquinonas/administração & dosagem , Naftoquinonas/farmacologia , Naftoquinonas/química , Óxido Nítrico/metabolismo , Óxido Nítrico/administração & dosagem , Humanos , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Zinco/química , Zinco/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Lipídeos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologiaRESUMO
Metal-organic frameworks (MOFs) with diverse chemistry, structures, and properties have emerged as appealing materials for miniaturized solid-state devices. The incorporation of MOF films in these devices, such as the integrated microelectronics and nanophotonics, requires robust patterning methods. However, existing MOF patterning methods suffer from some combinations of limited material adaptability, compromised patterning resolution and scalability, and degraded properties. Here we report a universal, crosslinking-induced patterning approach for various MOFs, termed as CLIP-MOF. Via resist-free, direct photo- and electron-beam (e-beam) lithography, the ligand crosslinking chemistry leads to drastically reduced solubility of colloidal MOFs, permitting selective removal of unexposed MOF films with developer solvents. This enables scalable, micro-/nanoscale (≈70 nm resolution), and multimaterial patterning of MOFs on large-area, rigid or flexible substrates. Patterned MOF films preserve their crystallinity, porosity, and other properties tailored for targeted applications, such as diffractive gas sensors and electrochromic pixels. The combined features of CLIP-MOF create more possibilities in the system-level integration of MOFs in various electronic, photonic, and biomedical devices.
RESUMO
The nonviral delivery systems that combine genes with photosensitizers for multimodal tumor gene/photodynamic therapy (PDT) have attracted much attention. In this study, a series of ROS-sensitive cationic bola-lipids were applied for the gene/photosensitizer codelivery. Zn-DPA was introduced as a cationic headgroup to enhance DNA binding, while the hydrophobic linking chains may facilitate the formation of lipid nanoparticles (LNP) and the encapsulation of photosensitizer Ce6. The length of the hydrophobic chain played an important role in the gene transfection process, and 14-TDZn containing the longest chains showed better DNA condensation, gene transfection, and cellular uptake. 14-TDZn LNPs could well load photosensitizer Ce6 to form 14-TDC without a loss of gene delivery efficiency. 14-TDC was used for codelivery of p53 and Ce6 to achieve enhanced therapeutic effects on the tumor cell proliferation inhibition and apoptosis. Results showed that the codelivery system was more effective in the inhibition of tumor cell proliferation than individual p53 or Ce6 monotherapy. Mechanism studies showed that the production of ROS after Ce6 irradiation could increase the accumulation of p53 protein in tumor cells, thereby promoting caspase-3 activation and inducing apoptosis, indicating some synergistic effect. These results demonstrated that 14-TDC may serve as a promising nanocarrier for gene/PDT combination therapy.
Assuntos
Lipossomos , Nanopartículas , Fotoquimioterapia , Porfirinas , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Nanopartículas/química , DNA , Porfirinas/químicaRESUMO
Using creativity to promote recreational services is crucial. Accordingly, creative linguistic landscapes (CLLs) are being used to improve visitors' experiences in some recreational zones. However, relevant research is still in its early stages. Therefore, this study was conducted. It summarized the leisure function categories and function evaluation indicators of CLLs in recreational zones respectively based on image materials and related online reviews. The leisure function outcomes of all CLL types were ranked using the fuzzy PROMETHEE method; based on this ranking, a CLL configuration optimization mode was suggested. The findings reveal the following. (1) Currently, there are mainly nine leisure function types of CLL in practice, although the type structure is severely imbalanced; there are 12 primary corresponding function evaluation indicators, although each of them draws significantly different attention. (2) There are notable variations among the outcomes of different types of functions of CLL: mood adjustment is the most advantageous function of CLL for leisure services, followed by emotional guidance and cognitive building functions; (3) According to the study findings, in the configuration of CLL, which aims at leisure function optimization, the "function focusing and coordinating mode (the superior functions of CLL are focused on and its various functions are coordinated)" should be adopted. The results provide meaningful lessons for the establishment of rational and effective CLL in recreational zones.
Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Atividades de Lazer/psicologia , Criatividade , Cognição , LinguísticaRESUMO
Advanced age is an independent risk factor for coronary artery disease (CAD), the leading global cause of mortality. Senescent vascular cells in the atherosclerotic plaques exhibit senescence-associated secretory phenotype (SASP). How SASP contributes to atherosclerosis and CAD, however, remains unclear. Here, we integrated RNA-array datasets of senescent human coronary arterial endothelial cells (HCAECs) and aortic smooth muscle cells (HASMCs) as well as genome-wide association data for CAD. We identified 26 genes from HCAECs and 6 genes from HASMCs related to SASP and CAD in both in-house and published datasets. Of which, Cystatin C (CST3), a CAD susceptibility gene, was found to be expressed in both HCAECs and HASMCs, thus, it was prioritized for further investigation. We demonstrated it was significantly elevated in senescent vascular cells, aged arteries, and early atherosclerosis. In vitro experiments showed that CST3 enhances the monocyte-endothelial cell adhesion. Additionally, ligand-receptor pairing analyses revealed two important pathways, COL4A1-ITGA1 and LPL-LRP1 pathways, linked to the critical processes in the development of atherosclerosis, including cell adhesion, inflammation response, extracellular matrix organization, and lipid metabolism. We further demonstrated a reduced monocyte-endothelial cell adhesion following the knockdown of COL4A1 or ITGA1 and a significantly increased expression of COL4A1, ITGA1, and LPL in arterial intima of aged mice and ApoE-/- mice. Our findings demonstrate that vascular cell-derived SASP proteins increase the CAD susceptibility and identify CST3 functionally contributing to atherosclerosis.
Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Camundongos , Animais , Idoso , Doença da Artéria Coronariana/genética , Células Endoteliais/metabolismo , Estudo de Associação Genômica Ampla , Camundongos Knockout para ApoE , Aterosclerose/genética , Proteínas , Senescência CelularRESUMO
It is long observed that females tend to live longer than males in nearly every country. However, the underlying mechanism remains elusive. In this study, we discovered that genetic associations with longevity are on average stronger in females than in males through bio-demographic analyses of genome-wide association studies (GWAS) dataset of 2178 centenarians and 2299 middle-age controls of Chinese Longitudinal Healthy Longevity Study (CLHLS). This discovery is replicated across North and South regions of China, and is further confirmed by North-South discovery/replication analyses of different and independent datasets of Chinese healthy aging candidate genes with CLHLS participants who are not in CLHLS GWAS, including 2972 centenarians and 1992 middle-age controls. Our polygenic risk score analyses of eight exclusive groups of sex-specific genes, analyses of sex-specific and not-sex-specific individual genes, and Genome-wide Complex Trait Analysis using all SNPs all reconfirm that genetic associations with longevity are on average stronger in females than in males. Our discovery/replication analyses are based on genetic datasets of in total 5150 centenarians and compatible middle-age controls, which comprises the worldwide largest sample of centenarians. The present study's findings may partially explain the well-known male-female health-survival paradox and suggest that genetic variants may be associated with different reactions between males and females to the same vaccine, drug treatment and/or nutritional intervention. Thus, our findings provide evidence to steer away from traditional view that "one-size-fits-all" for clinical interventions, and to consider sex differences for improving healthcare efficiency. We suggest future investigations focusing on effects of interactions between sex-specific genetic variants and environment on longevity as well as biological function.
RESUMO
High-affinity K+ (HAK) transporters play essential roles in facilitating root K+ uptake in higher plants. Our previous studies revealed that GhHAK5a, a member of the HAK family, is crucial for K+ uptake in upland cotton. Nevertheless, the precise regulatory mechanism governing the expression of GhHAK5a remains unclear. The yeast one-hybrid screening was performed to identify the transcription factors responsible for regulating GhHAK5a, and ethylene response factor 9 (GhERF9) was identified as a potential candidate. Subsequent dual-luciferase and electrophoretic mobility shift assays confirmed that GhERF9 binds directly to the GhHAK5a promoter, thereby activating its expression. Silencing of GhERF9 decreased the expression of GhHAK5a and exacerbated K+ deficiency symptoms in leaves, also decreased K+ uptake rate and K+ content in roots. Additionally, it was observed that the application of ethephon (an ethylene-releasing reagent) resulted in a significant upregulation of GhERF9 and GhHAK5a, accompanied by an increased rate of K+ uptake. Expectedly, GhEIN3b and GhEIL3c, the two key components involved in ethylene signaling, bind directly to the GhERF9 promoter. These findings provide valuable insights into the molecular mechanisms underlying the expression of GhHAK5a and ethylene-mediated K+ uptake and suggest a potential strategy to genetically enhance cotton K+ uptake by exploiting the EIN3/EILs-ERF9-HAK5 module.
Assuntos
Gossypium , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Handelin is a bioactive compound from Chrysanthemum indicum L. that improves motor function and muscle integrity during aging in Caenorhabditis elegans. This study aimed to further evaluate the protective effects and molecular mechanisms of handelin in a mouse muscle atrophy model induced by cachexia and aging. METHODS: A tumour necrosis factor (TNF)-α-induced atrophy model was used to examine handelin activity in cultured C2C12 myotubes in vitro. Lipopolysaccharide (LPS)-treated 8-week-old model mice and 23-month-old (aged) mice were used to examine the therapeutic effects of handelin on cachexia- and aging-induced muscle atrophy, respectively, in vivo. Protein and mRNA expressions were analysed by Western blotting, ELISA and quantitative PCR, respectively. Skeletal muscle mass was measured by histological analysis. RESULTS: Handelin treatment resulted in an upregulation of protein levels of early (MyoD and myogenin) and late (myosin heavy chain, MyHC) differentiation markers in C2C12 myotubes (P < 0.05), and enhanced mitochondrial respiratory (P < 0.05). In TNF-α-induced myotube atrophy model, handelin maintained MyHC protein levels, increased insulin-like growth factor (Igf1) mRNA expression and phosphorylated protein kinase B protein levels (P < 0.05). Handelin also reduced atrogin-1 expression, inhibited nuclear factor-κB activation and reduced mRNA levels of interleukin (Il)6, Il1b and chemokine ligand 1 (Cxcl1) (P < 0.05). In LPS-treated mice, handelin increased body weight (P < 0.05), the weight (P < 0.01) and cross-sectional area (CSA) of the soleus muscle (P < 0.0001) and improved motor function (P < 0.05). In aged mice, handelin slightly increased the weight of the tibialis anterior muscle (P = 0.06) and CSA of the tibialis anterior and gastrocnemius muscles (P < 0.0001). In the tibialis anterior muscle of aged mice, handelin upregulated mRNA levels of Igf1 (P < 0.01), anti-inflammatory cytokine Il10 (P < 0.01), mitochondrial biogenesis genes (P < 0.05) and antioxidant-related enzymes (P < 0.05) and strengthened Sod and Cat enzyme activity (P < 0.05). Handelin also reduced lipid peroxidation and protein carbonylation, downregulated mRNA levels of Fbxo32, Mstn, Cxcl1, Il1b and Tnf (P < 0.05), and decreased IL-1ß levels in serum (P < 0.05). Knockdown of Hsp70 or using an Hsp70 inhibitor abolished the ameliorating effects of handelin on myotube atrophy. CONCLUSIONS: Handelin ameliorated cachexia- and aging-induced skeletal muscle atrophy in vitro and in vivo, by maintaining homeostasis of protein synthesis and degradation, possibly by inhibiting inflammation. Handelin is a potentially promising drug candidate for the treatment of muscle wasting.
Assuntos
Caquexia , Proteostase , Terpenos , Animais , Camundongos , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/uso terapêutico , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Músculo Esquelético/patologia , Fator de Necrose Tumoral alfa , Modelos Animais de Doenças , Inflamação/metabolismo , RNA Mensageiro/metabolismoRESUMO
Bactrocera minax is a disastrous pest of citrus crops in China. Numerous studies focused on the molecular mechanism of odorant perception of B. minax, but the molecular mechanism of odorant degradation remains unclear. Glutathione S-transferases (GSTs) are considered as a class of odorant-degrading enzymes involved in degrading odorant molecules in insects' olfactory system. Here, we identified a delta-class GST gene, BminGSTd3, from B. minax. It was predominantly expressed in adult's olfactory organ antennae. The bacterially expressed recombinant BminGSTd3 was able to catalyze the conjugation of glutathione (GSH) with 2, 4-dinitrochlorobenzene (CDNB). Spectrophotometric analysis showed that undecanol can inhibit catalytic activities of BminGSTd3. Metabolic assays exhibited that undecanol can be depleted by BminGSTd3. Undecanol is believed to be an important B. minax sex pheromone component. The other components of the pheromone remain unclear. To understand how BminGSTd3 specifically recognizes undecanol, a 3D model of BminGSTd3 was constructed by homology modeling. Molecular docking based on this model revealed that E64 and S65 are the key amino acids recognizing undecanol, and this was proven by site-directed mutagenesis and intrinsic fluorescence assays. We suggest that BminGSTd3 is an undecanol metabolizing GST in B.minax, and E64 and S65 may serve as the key binding sites.
Assuntos
Citrus , Tephritidae , Animais , Tephritidae/genética , Citrus/genética , Glutationa Transferase/genética , Simulação de Acoplamento Molecular , Drosophila , GlutationaRESUMO
The present study aims to establish comprehensive evaluation models of physical fitness of the elderly based on machine learning, and provide an important basis to monitor the elderly's physique. Through stratified sampling, the elderly aged 60 years and above were selected from 10 communities in Nanchang City. The physical fitness of the elderly was measured by the comprehensive physical assessment scale based on our previous study. Fuzzy neural network (FNN), support vector machine (SVM) and random forest (RF) models for comprehensive physical evaluation of the elderly people in communities were constructed respectively. The accuracy, sensitivity and specificity of the comprehensive physical fitness evaluation models constructed by FNN, SVM and RF were above 0.85, 0.75 and 0.89, respectively, with the FNN model possessing the best prediction performance. FNN, RF and SVM models are valuable in the comprehensive evaluation and prediction of physical fitness, which can be used as tools to carry out physical evaluation of the elderly.
Assuntos
Redes Neurais de Computação , Aptidão Física , Idoso , Humanos , Exercício Físico , Aprendizado de MáquinaRESUMO
The present study aims to construct an elderly vitality index evaluation system and develop a comprehensive vitality evaluation scale for the elderly to reasonably evaluate the vitality level of the elderly in China, so as to provide a reference for promoting the realization of "active aging" and "healthy aging". Literature research and in-depth interview were used to collect the senile vitality sensitive indexes. The indexes were screened and corrected by Delphi expert consultation method, item analysis method based on classical test theory, factor analysis method, and reliability and validity analysis method. The analytic hierarchy process was used to calculate the weight of each level of indexes. An elderly vitality evaluation system including 4 first-level indexes and 24 second-level indexes was constructed. The consistency test results of all levels of indicators showed that the consistency index (CI) and consistent ratio (CR) were both less than 0.1, which met the requirements and showed satisfactory consistency. The weights of exercise vitality, nutritional vitality, psychological vitality and social vitality were 0.263, 0.141, 0.455 and 0.141, respectively. In conclusion, the comprehensive vitality scale constructed for the Chinese elderly is reliable and scientific, and can be used to evaluate the vitality of the elderly.
Assuntos
Envelhecimento , Processo de Hierarquia Analítica , Humanos , Idoso , Reprodutibilidade dos Testes , Técnica Delphi , China , Inquéritos e QuestionáriosRESUMO
3D printing of inorganic materials with nanoscale resolution offers a different materials processing pathway to explore devices with emergent functionalities. However, existing technologies typically involve photocurable resins that reduce material purity and degrade properties. We develop a general strategy for laser direct printing of inorganic nanomaterials, as exemplified by more than 10 semiconductors, metal oxides, metals, and their mixtures. Colloidal nanocrystals are used as building blocks and photochemically bonded through their native ligands. Without resins, this bonding process produces arbitrary three-dimensional (3D) structures with a large inorganic mass fraction (~90%) and high mechanical strength. The printed materials preserve the intrinsic properties of constituent nanocrystals and create structure-dictated functionalities, such as the broadband chiroptical responses with an anisotropic factor of ~0.24 for semiconducting cadmium chalcogenide nanohelical arrays.