Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 1): 130944, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493809

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that causes huge economic losses to the global pig industry. Nonstructural protein 7α (NSP7α) of PRRSV is highly conserved among different lineages of PRRSV and could be a potential target for the development of detection methods. In this study, NSP7α was expressed in prokaryote (Escherichia coli) and purified. An NSP7α-ab-ELISA detection method was established, the NSP7α-ab-ELISA has 93.1 % coincidence rate with IDEXX PRRS X3 ab test kit. NSP7α antibody was detected in pig serum by ELISA 14 days following PRRSV infection. Three monoclonal antibodies (4H9, 3F2, and C10) against NSP7α prepared by a hybridoma technique were used for epitope mapping by indirect immunofluorescence. The 4H9, 3F2, and C10 antibodies all recognized the C-terminal 72-149 amino acid region of NSP7α. 4H9 reacted with amino acids 135-143, but 3F2 and C10 did not react with any truncated polypeptide. In addition, by using the monoclonal antibodies, NSP7α was localized solely in the cytoplasm, while the N protein was distributed in the cytoplasm and nucleus. The collective findings of the antigenicity and epitope of NSP7α will be helpful for understanding the antigenicity of NSP7α and developing PRRSV diagnostic methods.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Mapeamento de Epitopos , Anticorpos Antivirais , Anticorpos Monoclonais , Escherichia coli
2.
Virus Evol ; 10(1): veae016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404965

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) poses a serious threat to the pig industry in China. Our previous study demonstrated that PRRSV persists with local circulations and overseas imports in China and has formed a relatively stable epidemic pattern. However, the sudden African swine fever (ASF) outbreak in 2018 caused serious damage to China's pig industry structure, which resulted in about 40 per cent of pigs being slaughtered. The pig yields recovered by the end of 2019. Thus, whether the ASF outbreak reframed PRRSV evolution with changes in pig populations and further posed new threats to the pig industry becomes a matter of concern. For this purpose, we conducted genomic surveillance and recombination, NSP2 polymorphism, population dynamics, and geographical spread analysis of PRRSV-2, which is dominant in China. The results showed that the prevalence of ASF had no significant effects on genetic diversities like lineage composition, recombination patterns, and NSP2 insertion and deletion patterns but was likely to lead to changes in PRRSV-2 recombination frequency. As for circulation of the two major sub-lineages of Lineage 1, there was no apparent transmission of NADC30-like among provinces, while NADC34-like had obvious signs of inter-provincial transmission and foreign importation during the ASF epidemic. In addition, two suspected vaccine recombinant epidemic strains suggest a slight safety issue of vaccine use. Herein, the interference of ASF to the PRRSV-2 evolutionary pattern was evaluated and vaccine safety was analyzed, in order to monitor the potential threat of PRRSV-2 to China's pig industry in the post-epidemic era of ASF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA