Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 22(19): 6224-8, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22932313

RESUMO

Based on a shared structural core of diarylamine in several known anticancer drugs as well as a new cytotoxic hit 6-chloro-2-(4-cyanophenyl)amino-3-nitropyridine (7), 30 diarylamines and diarylethers were designed, synthesized, and evaluated for cytotoxic activity against A549, KB, KB-vin, and DU145 human tumor cell lines (HTCL). Four new leads 11e, 12, 13a, and 13b were discovered with GI(50) values ranging from 0.33 to 3.45µM. Preliminary SAR results revealed that a diarylamine or diarylether could serve as an active structural core, meta-chloro and ortho-nitro groups on the A-ring (either pyridine or phenyl ring) were necessary and crucial for cytotoxic activity, and the para-substituents on the other phenyl ring (B-ring) were related to inhibitory selectivity for different tumor cells. In an investigation of potential biological targets of the new leads, high thoughput kinase screening discovered that new leads 11e, 12 and 13b especially inhibit Mer tyrosine kinase, a proto-oncogene associated with munerous tumor types, with IC(50) values of 2.2-3.0µM. Therefore, these findings provide a good starting point to optimize a new class of compounds as potential anticancer agents, particularly targeting Mer tyrosine kinase.


Assuntos
Aminas/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Éteres/farmacologia , Aminas/síntese química , Aminas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Éteres/síntese química , Éteres/química , Humanos , Estrutura Molecular , Proto-Oncogene Mas , Relação Estrutura-Atividade
2.
Yao Xue Xue Bao ; 45(2): 177-83, 2010 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-21351427

RESUMO

The new HIV-1 NNRTI drug Etravirine (TMC125) and a promising drug candidate Rilpivirine (TMC278) in phase III clinical trial are compounds belonging to the diarylpyrimidine (DAPY) family. They are extremely high potent against both wild-type and many drug-resistant HIV-1 strains, providing new hope for HIV-infected patients who fail to use current drugs due to the emergence of drug-resistant HIV mutants. The discovery and development of DAPY derivatives as next-generation NNRTI drugs depend on multidisciplinary coordination and their success has encouraged new researches to explore more next-generation NNRTIs with new scaffolds. This review described the story of discovery and development of DAPY derivatives as next-generation NNRTIs and related progress.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Farmacorresistência Viral , Infecções por HIV/tratamento farmacológico , Humanos , Estrutura Molecular , Nitrilas/síntese química , Nitrilas/química , Nitrilas/farmacologia , Piridazinas/síntese química , Piridazinas/química , Piridazinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Rilpivirina
3.
Yao Xue Xue Bao ; 45(9): 1116-22, 2010 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-21351567

RESUMO

The biotransformation, CYP reaction phenotyping, the impact of CYP inhibitors and enzyme kinetics of 3-cyanomethyl-4-methyl-DCK (CMDCK), a new anti-HIV preclinical candidate belonging to DCK analogs, were investigated in human intestinal microsomes and recombinant cytochrome P450 (CYP) enzymes. CMDCK (4 micromol L(-1)) was incubated with a panel of rCYP enzymes (CYP1A2, 2C9, 2C19, 2D6 and 3A4) in vitro. The remaining parent drug in incubates was quantitatively analyzed by a LC-MS method. CYP3A4 was identified as the principal CYP isoenzyme responsible for its metabolism in intestinal microsomes. The major metabolic pathway of CMDCK was oxidation and a number of oxidative metabolites were screened with LC-MS. The Km, Vmax, CLint and T1/2 of CMDCK obtained from human intestinal microsome were 45.6 micromol L(-1), 0.33 micromol L(-1) min(-1), 12.1 mL min(-1) kg(-1) and 25.7 min, respectively. Intestinal clearance of CMDCK was estimated from in vitro data to be 3.3 mL min(-1) kg(-1), and was almost equal to the intestinal blood flow rate (4.6 mL min(-1) kg(-1)). The selective CYP3A4 inhibitors, ketoconazole, troleandomycin and ritonavir demonstrated significant inhibitory effects on CMDCK intestinal metabolism, which suggested that co-administration of CMDCK with potent CYP3A inhibitors, such as ritonavir, might decrease its intestinal metabolic clearance and subsequently improve its bioavailability in body.


Assuntos
Fármacos Anti-HIV/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Cumarínicos/metabolismo , Inibidores do Citocromo P-450 CYP3A , Mucosa Intestinal/metabolismo , Microssomos/metabolismo , Fármacos Anti-HIV/farmacocinética , Disponibilidade Biológica , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Cumarínicos/farmacocinética , Citocromo P-450 CYP3A , Humanos , Cetoconazol/farmacologia , Taxa de Depuração Metabólica , Ritonavir/farmacologia , Troleandomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA