RESUMO
Contamination of water streams by dyes and heavy metals has become a major problem due to their persistence, accumulation, and toxicity. Therefore, it is essential to eliminate and/or reduce these contaminants before discharge into the natural environment. In recent years, 3D graphene has drawn intense research interests owing to its large surface area, superior charge conductivity, and thermal conductivity properties. Due to their unique surface and structural properties, 3D graphene-based materials (3D GBMs) are regarded as ideal adsorbents for decontamination and show great potential in wastewater or exhaust gas treatment. Here, this minireview summarizes the recent progress on 3D GBMs synthesis and their applications for adsorbing dyes and heavy metals from wastewater based on the structures and properties of 3D GBMs, which provides valuable insights into 3D GBMs' application in the environmental field.
Assuntos
Grafite , Metais Pesados , Poluentes Químicos da Água , Adsorção , Corantes , Poluentes Químicos da Água/análiseRESUMO
3D graphene-based materials are promising adsorbents for environmental applications. Furthermore, increasing attention has been paid to the improvement of 3D graphene adsorbents for removing pollutants. In this article, the progress in the modification of 3D graphene materials and their performance for removing pollutants were reviewed. The modification strategies, which were classified as (1) the activation with CO2 (steam and other oxidants) and (2) the surface functionalization with polymers (metals, and metal oxides), were evaluated. The performances of modified 3D graphene materials were assessed for the removal of waste gases (such as CO2), refractory organics, and heavy metals. The challenges and future research directions were discussed for the environmental applications of 3D graphene materials.