Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Ther ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659225

RESUMO

While conventional chimeric antigen-receptor (CAR)-T therapies have shown remarkable clinical activity in some settings, they can induce severe toxicities and are rarely curative. To address these challenges, we developed a controllable cell therapy where synthetic D-domain-containing proteins (soluble protein antigen-receptor X-linker [SparX]) bind one or more tumor antigens and mark those cells for elimination by genetically modified T cells (antigen-receptor complex [ARC]-T). The chimeric antigen receptor was engineered with a D-domain that specifically binds to the SparX protein via a unique TAG, derived from human alpha-fetoprotein. The interaction is mediated through an epitope on the TAG that is occluded in the native alpha-fetoprotein molecule. In vitro and in vivo data demonstrate that the activation and cytolytic activity of ARC-T cells is dependent on the dose of SparX protein and only occurs when ARC-T cells are engaged with SparX proteins bound to antigen-positive cells. ARC-T cell specificity was also redirected in vivo by changing SparX proteins that recognized different tumor antigens to combat inherent or acquired tumor heterogeneity. The ARC-SparX platform is designed to expand patient and physician access to cell therapy by controlling potential toxicities through SparX dosing regimens and enhancing tumor elimination through sequential or simultaneous administration of SparX proteins engineered to bind different tumor antigens.

2.
Clin Cancer Res ; 29(6): 1086-1101, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36355054

RESUMO

PURPOSE: We evaluated the activity of AZD8205, a B7-H4-directed antibody-drug conjugate (ADC) bearing a novel topoisomerase I inhibitor (TOP1i) payload, alone and in combination with the PARP1-selective inhibitor AZD5305, in preclinical models. EXPERIMENTAL DESIGN: IHC and deep-learning-based image analysis algorithms were used to assess prevalence and intratumoral heterogeneity of B7-H4 expression in human tumors. Several TOP1i-ADCs, prepared with Val-Ala or Gly-Gly-Phe-Gly peptide linkers, with or without a PEG8 spacer, were compared in biophysical, in vivo efficacy, and rat toxicology studies. AZD8205 mechanism of action and efficacy studies were conducted in human cancer cell line and patient-derived xenograft (PDX) models. RESULTS: Evaluation of IHC-staining density on a per-cell basis revealed a range of heterogeneous B7-H4 expression across patient tumors. This informed selection of bystander-capable Val-Ala-PEG8-TOP1i payload AZ14170133 and development of AZD8205, which demonstrated improved stability, efficacy, and safety compared with other linker-payload ADCs. In a study of 26 PDX tumors, single administration of 3.5 mg/kg AZD8205 provided a 69% overall response rate, according to modified RECIST criteria, which correlated with homologous recombination repair (HRR) deficiency (HRD) and elevated levels of B7-H4 in HRR-proficient models. Addition of AZD5305 sensitized very low B7-H4-expressing tumors to AZD8205 treatment, independent of HRD status and in models representing clinically relevant mechanisms of PARPi resistance. CONCLUSIONS: These data provide evidence for the potential utility of AZD8205 for treatment of B7-H4-expressing tumors and support the rationale for an ongoing phase 1 clinical study (NCT05123482). See related commentary by Pommier and Thomas, p. 991.


Assuntos
Imunoconjugados , Neoplasias , Ratos , Humanos , Animais , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Inibidores da Topoisomerase I , Neoplasias/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerase-1/genética
3.
Mol Cancer Ther ; 21(7): 1171-1183, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35737298

RESUMO

Chimeric antigen receptor (CAR) T-cell therapies directed against B-cell maturation antigen (BCMA) have shown compelling clinical activity and manageable safety in subjects with relapsed and refractory multiple myeloma (RRMM). Prior reported CAR T cells have mostly used antibody fragments such as humanized or murine single-chain variable fragments or camelid heavy-chain antibody fragments as the antigen recognition motif. Herein, we describe the generation and preclinical evaluation of ddBCMA CAR, which uses a novel BCMA binding domain discovered from our D domain phage display libraries and incorporates a 4-1BB costimulatory motif and CD3-zeta T-cell activation domain. Preclinical in vitro studies of ddBCMA CAR T cells cocultured with BCMA-positive cell lines showed highly potent, dose-dependent measures of cytotoxicity, cytokine production, T-cell degranulation, and T-cell proliferation. In each assay, ddBCMA CAR performed as well as the BCMA-directed scFv-based C11D5.3 CAR. Furthermore, ddBCMA CAR T cells demonstrated in vivo tumor suppression in three disseminated BCMA-expressing tumor models in NSG-immunocompromised mice. On the basis of these promising preclinical data, CART-ddBCMA is being studied in a first-in-human phase I clinical study to assess the safety, pharmacokinetics, immunogenicity, efficacy, and duration of effect for patients with RRMM (NCT04155749).


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Animais , Antígeno de Maturação de Linfócitos B/metabolismo , Humanos , Imunoterapia Adotiva , Camundongos , Mieloma Múltiplo/patologia , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Cadeia Única/genética , Linfócitos T
4.
Mol Cancer Ther ; 21(4): 594-606, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086954

RESUMO

Multivalent second-generation TRAIL-R2 agonists are currently in late preclinical development and early clinical trials. Herein, we use a representative second-generation agent, MEDI3039, to address two major clinical challenges facing these agents: lack of predictive biomarkers to enable patient selection and emergence of resistance. Genome-wide CRISPR knockout screens were notable for the lack of resistance mechanisms beyond the canonical TRAIL-R2 pathway (caspase-8, FADD, BID) as well as p53 and BAX in TP53 wild-type models, whereas a CRISPR activatory screen identified cell death inhibitors MCL-1 and BCL-XL as mechanisms to suppress MEDI3039-induced cell death. High-throughput drug screening failed to identify genomic alterations associated with response to MEDI3039; however, transcriptomics analysis revealed striking association between MEDI3039 sensitivity and expression of core components of the extrinsic apoptotic pathway, most notably its main apoptotic effector caspase-8 in solid tumor cell lines. Further analyses of colorectal cell lines and patient-derived xenografts identified caspase-8 expression ratio to its endogenous regulator FLIP(L) as predictive of sensitivity to MEDI3039 in several major solid tumor types and a further subset indicated by caspase-8:MCL-1 ratio. Subsequent MEDI3039 combination screening of TRAIL-R2, caspase-8, FADD, and BID knockout models with 60 compounds with varying mechanisms of action identified two inhibitor of apoptosis proteins (IAP) that exhibited strong synergy with MEDI3039 that could reverse resistance only in BID-deleted models. In summary, we identify the ratios of caspase-8:FLIP(L) and caspase-8:MCL-1 as potential predictive biomarkers for second-generation TRAIL-R2 agonists and loss of key effectors such as FADD and caspase-8 as likely drivers of clinical resistance in solid tumors.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Ligante Indutor de Apoptose Relacionado a TNF , Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/genética , Linhagem Celular Tumoral , Genômica , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
5.
Mol Cancer Ther ; 20(3): 541-552, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33653945

RESUMO

Resistance to antibody-drug conjugates (ADCs) has been observed in both preclinical models and clinical studies. However, mechanisms of resistance to pyrrolobenzodiazepine (PBD)-conjugated ADCs have not been well characterized and thus, this study was designed to investigate development of resistance to PBD dimer warheads and PBD-conjugated ADCs. We established a PBD-resistant cell line, 361-PBDr, by treating human breast cancer MDA-MB-361 cells with gradually increasing concentrations of SG3199, the PBD dimer released from the PBD drug-linker tesirine. 361-PBDr cells were over 20-fold less sensitive to SG3199 compared with parental cells and were cross-resistant to other PBD warhead and ADCs conjugated with PBDs. Proteomic profiling revealed that downregulation of Schlafen family member 11 (SLFN11), a putative DNA/RNA helicase, sensitizing cancer cells to DNA-damaging agents, was associated with PBD resistance. Confirmatory studies demonstrated that siRNA knockdown of SLFN11 in multiple tumor cell lines conferred reduced sensitivity to SG3199 and PBD-conjugated ADCs. Treatment with EPZ011989, an EZH2 inhibitor, derepressed SLFN11 expression in 361-PBDr and other SLFN11-deficient tumor cells, and increased sensitivity to PBD and PBD-conjugated ADCs, indicating that the suppression of SLFN11 expression is associated with histone methylation as reported. Moreover, we demonstrated that combining an ataxia telangiectasia and Rad3-related protein (ATR) inhibitor, AZD6738, with SG3199 or PBD-based ADCs led to synergistic cytotoxicity in either resistant 361-PBDr cells or cells that SLFN11 was knocked down via siRNA. Collectively, these data provide insights into potential development of resistance to PBDs and PBD-conjugated ADCs, and more importantly, inform strategy development to overcome such resistance.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Benzodiazepinas/metabolismo , Proteínas Nucleares/metabolismo , Pirróis/metabolismo , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Transfecção
6.
Clin Cancer Res ; 25(18): 5441-5448, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30979742

RESUMO

Since the first approval of gemtuzumab ozogamicin (Mylotarg; Pfizer; CD33 targeted), two additional antibody-drug conjugates (ADC), brentuximab vedotin (Adcetris; Seattle Genetics, Inc.; CD30 targeted) and inotuzumab ozogamicin (Besponsa; Pfizer; CD22 targeted), have been approved for hematologic cancers and 1 ADC, trastuzumab emtansine (Kadcyla; Genentech; HER2 targeted), has been approved to treat breast cancer. Despite a clear clinical benefit being demonstrated for all 4 approved ADCs, the toxicity profiles are comparable with those of standard-of-care chemotherapeutics, with dose-limiting toxicities associated with the mechanism of activity of the cytotoxic warhead. However, the enthusiasm to develop ADCs has not been dampened; approximately 80 ADCs are in clinical development in nearly 600 clinical trials, and 2 to 3 novel ADCs are likely to be approved within the next few years. While the promise of a more targeted chemotherapy with less toxicity has not yet been realized with ADCs, improvements in technology combined with a wealth of clinical data are helping to shape the future development of ADCs. In this review, we discuss the clinical and translational strategies associated with improving the therapeutic index for ADCs.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Animais , Biomarcadores , Estudos Clínicos como Assunto/normas , Desenvolvimento de Medicamentos , Monitoramento de Medicamentos , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Pesquisa Translacional Biomédica/normas , Pesquisa Translacional Biomédica/tendências , Resultado do Tratamento
7.
Breast Cancer Res ; 21(1): 27, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777098

RESUMO

BACKGROUND: TNF-related apoptosis-inducing ligand (TRAIL) receptor agonists are attractive anti-tumor agents because of their capability to induce apoptosis in cancer cells by activating death receptors (DR) 4 and 5 with little toxicity against normal cells. Despite an attractive mechanism of action, previous clinical efforts to use TRAIL receptor agonists have been unsuccessful. In this study, we examined MEDI3039, a highly potent multivalent DR5 agonist, in breast cancer cell lines and in vivo models. METHODS: As in vitro model systems, we used 19 breast cancer cell lines that are categorized into four subtypes: ER+, HER2 amplified, basal A (triple-negative breast cancer) TNBC, and basal B TNBC. Cell viability was analyzed by MTS and RealTime live/dead assays. As in vivo model systems, MDA-MB231T orthotopic primary tumor growth in the mammary fat pad (MFP) and two experimental lung metastasis models were used. The effect of MEDI3039 on MFP tumors was assessed with immunohistochemical analysis. Lung metastases were analyzed with Bouin's and H&E staining. RESULTS: MEDI3039 killed multiple breast cancer cell lines, but the sensitivity varied among different subtypes. Sensitivity was basal B TNBC >> basal A TNBC > HER2 amplified > ER+ (average IC50 = 1.4, 203, 314, 403 pM, respectively). While the pattern of relative sensitivity was similar to GST-TRAIL in most cell lines, MEDI3039 was at least two orders of magnitude more potent compared with GST-TRAIL. In the MFP model, weekly treatment with 0.1 or 0.3 mg/kg MEDI3039 for 5 weeks inhibited tumor growth by 99.05% or 100% (median), respectively, compared with the control group, and extended animal survival (p = 0.08 or p = 0.0032 at 0.1 or 0.3 mg/kg, respectively). MEDI3039-induced caspase activation was confirmed in tumors grown in MFP (p < 0.05). In an experimental pulmonary metastasis model, MEDI3039 significantly suppressed outgrowth of surface (p < 0.0001) and microscopic metastases (p < 0.05). In an established lung metastasis model, MEDI3039 significantly inhibited growth of metastases (p < 0.01 in surface [> 4 mm], p < 0.01 in tumor percentage) and extended animal survival (p < 0.0001). CONCLUSION: MEDI3039 is a potent DR5 agonist in breast cancer cells in vitro and in vivo and has potential as a cancer drug in breast cancer patients, especially those with basal B TNBC.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Nus , Análise de Sobrevida , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Cancer Ther ; 18(1): 89-99, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30352801

RESUMO

Pyrrolobenzodiazepine dimers (PBD) form cross-links within the minor groove of DNA causing double-strand breaks (DSB). DNA repair genes such as BRCA1 and BRCA2 play important roles in homologous recombination repair of DSB. We hypothesized that PBD-based antibody-drug conjugates (ADC) will have enhanced killing of cells in which homologous recombination processes are defective by inactivation of BRCA1 or BRCA2 genes. To support this hypothesis, we found 5T4-PBD, a PBD-dimer conjugated to anti-5T4 antibody, elicited more potent antitumor activity in tumor xenografts that carry defects in DNA repair due to BRCA mutations compared with BRCA wild-type xenografts. To delineate the role of BRCA1/2 mutations in determining sensitivity to PBD, we used siRNA knockdown and isogenic BRCA1/2 knockout models to demonstrate that BRCA deficiency markedly increased cell sensitivity to PBD-based ADCs. To understand the translational potential of treating patients with BRCA deficiency using PBD-based ADCs, we conducted a "mouse clinical trial" on 23 patient-derived xenograft (PDX) models bearing mutations in BRCA1 or BRCA2 Of these PDX models, 61% to 74% had tumor stasis or regression when treated with a single dose of 0.3 mg/kg or three fractionated doses of 0.1 mg/kg of a PBD-based ADC. Furthermore, a suboptimal dose of PBD-based ADC in combination with olaparib resulted in significantly improved antitumor effects, was not associated with myelotoxicity, and was well tolerated. In conclusion, PBD-based ADC alone or in combination with a PARP inhibitor may have improved therapeutic window in patients with cancer carrying BRCA mutations.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Benzodiazepinas/química , Imunoconjugados/administração & dosagem , Neoplasias Experimentais/tratamento farmacológico , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Pirróis/química , Administração Intravenosa , Animais , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Proteína BRCA1/genética , Proteína BRCA2/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Células HeLa , Humanos , Imunoconjugados/química , Imunoconjugados/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos , Mutação , Neoplasias Experimentais/genética , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Clin Cancer Res ; 24(24): 6570-6582, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30131388

RESUMO

PURPOSE: Antibody-drug conjugates (ADC) utilizing noncleavable linker drugs have been approved for clinical use, and several are in development targeting solid and hematologic malignancies including multiple myeloma. Currently, there are no reliable biomarkers of activity for these ADCs other than presence of the targeted antigen. We observed that certain cell lines are innately resistant to such ADCs, and sought to uncover the underlying mechanism of resistance. EXPERIMENTAL DESIGN: The expression of 43 lysosomal membrane target genes was evaluated in cell lines resistant to ADCs bearing the noncleavable linker, pyrrolobenzodiazepine payload SG3376, in vitro. The functional relevance of SLC46A3, a lysosomal transporter of noncleavable ADC catabolites whose expression uniquely correlated with SG3376 resistance, was assessed using EPHA2-, HER2-, and BCMA-targeted ADCs and isogenic cells overexpressing or genetically inactivated for SLC46A3. SLC46A3 expression was also examined in patient-derived xenograft and in vitro models of acquired T-DM1 resistance and multiple myeloma bone marrow samples by RT-PCR. RESULTS: Loss of SLC46A3 expression was found to be a mechanism of innate and acquired resistance to ADCs bearing DM1 and SG3376. Sensitivity was restored in refractory lines upon introduction of SLC46A3, suggesting that expression of SLC46A3 may be more predictive of activity than target antigen levels alone. Interrogation of primary multiple myeloma samples indicated a range of SLC46A3 expression, including samples with undetectable levels like multiple myeloma cell lines resistant to BCMA-targeting DM1 and SG3376 ADCs. CONCLUSIONS: Our findings support SLC46A3 as a potential patient selection biomarker with immediate relevance to clinical trials involving these ADCs.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Benzodiazepinas/farmacologia , Biomarcadores , Imunoconjugados/farmacologia , Maitansina/farmacologia , Pirróis/farmacologia , Animais , Antineoplásicos Imunológicos/química , Benzodiazepinas/química , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Inativação Gênica , Humanos , Imunoconjugados/química , Maitansina/química , Melanoma Experimental , Camundongos , Pirróis/química , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Cancer Ther ; 17(10): 2176-2186, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30065100

RESUMO

Prostate-specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase that is highly expressed in nearly all prostate cancers with the highest expression in metastatic castration-resistant prostate cancer (mCRPC). The prevalence of increased surface expression and constitutive internalization of PSMA make it an attractive target for an antibody-drug conjugate (ADC) approach to treating patients with mCRPC. MEDI3726 (previously known as ADCT-401) is an ADC consisting of an engineered version of the anti-PSMA antibody J591 site specifically conjugated to the pyrrolobenzodiazepine (PBD) dimer tesirine. MEDI3726 specifically binds the extracellular domain of PSMA and, once internalized, releases the PBD dimer to crosslink DNA and trigger cell death. In vitro, MEDI3726 demonstrated potent and specific cytotoxicity in a panel of PSMA-positive prostate cancer cell lines, consistent with internalization and DNA interstrand crosslinking. In vivo, MEDI3726 showed robust antitumor activity against the LNCaP and the castration-resistant CWR22Rv1 prostate cancer cell line xenografts. MEDI3726 also demonstrated durable antitumor activity in the PSMA-positive human prostate cancer patient-derived xenograft (PDX) LuCaP models. This activity correlated with increased phosphorylated Histone H2AX in tumor xenografts treated with MEDI3726. MEDI3726 is being evaluated in a phase I clinical trial as a treatment for patients with metastatic castrate-resistant prostate cancer (NCT02991911). Mol Cancer Ther; 17(10); 2176-86. ©2018 AACR.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Glutamato Carboxipeptidase II/antagonistas & inibidores , Imunoconjugados/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Glutamato Carboxipeptidase II/genética , Glutamato Carboxipeptidase II/metabolismo , Humanos , Imuno-Histoquímica , Macaca fascicularis , Masculino , Camundongos , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Oncotarget ; 9(33): 22960-22975, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29796165

RESUMO

Despite recent advances in treatment, breast cancer remains the second-most common cause of cancer death among American women. A greater understanding of the molecular characteristics of breast tumors could ultimately lead to improved tumor-targeted treatment options, particularly for subsets of breast cancer patients with unmet needs. Using an unbiased genomics approach to uncover membrane-localized tumor-associated antigens (TAAs), we have identified glial cell line derived neurotrophic factor (GDNF) family receptor α 1 (GFRA1) as a breast cancer TAA. Immunohistochemistry (IHC) revealed that GFRA1 displays a limited normal tissue expression profile coupled with overexpression in specific breast cancer subsets. The cell surface localization as determined by fluorescence-activated cell sorting (FACS) and the rapid internalization kinetics of GFRA1 makes it an ideal target for therapeutic exploitation as an antibody-drug conjugate (ADC). Here, we describe the development of a pyrrolobenzodiazepine (PBD)-armed, GFRA1-targeted ADC that demonstrates cytotoxicity in GFRA1-positive cell lines and patient-derived xenograft (PDX) models. The safety profile of the rat cross-reactive GFRA1-PBD was assessed in a rat toxicology study to find transient cellularity reductions in the bone marrow and peripheral blood, consistent with known off-target effects of PBD ADC's. These studies reveal no evidence of on-target toxicity and support further evaluation of GFRA1-PBD in GFRA1-positive tumors.

13.
Elife ; 72018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29345617

RESUMO

Malignant mesothelioma (MM) is poorly responsive to systemic cytotoxic chemotherapy and invariably fatal. Here we describe a screen of 94 drugs in 15 exome-sequenced MM lines and the discovery of a subset defined by loss of function of the nuclear deubiquitinase BRCA associated protein-1 (BAP1) that demonstrate heightened sensitivity to TRAIL (tumour necrosis factor-related apoptosis-inducing ligand). This association is observed across human early passage MM cultures, mouse xenografts and human tumour explants. We demonstrate that BAP1 deubiquitinase activity and its association with ASXL1 to form the Polycomb repressive deubiquitinase complex (PR-DUB) impacts TRAIL sensitivity implicating transcriptional modulation as an underlying mechanism. Death receptor agonists are well-tolerated anti-cancer agents demonstrating limited therapeutic benefit in trials without a targeting biomarker. We identify BAP1 loss-of-function mutations, which are frequent in MM, as a potential genomic stratification tool for TRAIL sensitivity with immediate and actionable therapeutic implications.


Assuntos
Neoplasias Pulmonares/fisiopatologia , Mesotelioma/fisiopatologia , Proteínas Repressoras/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Mesotelioma Maligno , Camundongos
14.
Mol Cancer Ther ; 16(8): 1576-1587, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28522587

RESUMO

Antibody-drug conjugates (ADC) are used to selectively deliver cytotoxic agents to tumors and have the potential for increased clinical benefit to cancer patients. 5T4 is an oncofetal antigen overexpressed on the cell surface in many carcinomas on both bulk tumor cells as well as cancer stem cells (CSC), has very limited normal tissue expression, and can internalize when bound by an antibody. An anti-5T4 antibody was identified and optimized for efficient binding and internalization in a target-specific manner, and engineered cysteines were incorporated into the molecule for site-specific conjugation. ADCs targeting 5T4 were constructed by site-specifically conjugating the antibody with payloads that possess different mechanisms of action, either a DNA cross-linking pyrrolobenzodiazepine (PBD) dimer or a microtubule-destabilizing tubulysin, so that each ADC had a drug:antibody ratio of 2. The resulting ADCs demonstrated significant target-dependent activity in vitro and in vivo; however, the ADC conjugated with a PBD payload (5T4-PBD) elicited more durable antitumor responses in vivo than the tubulysin conjugate in xenograft models. Likewise, the 5T4-PBD more potently inhibited the growth of 5T4-positive CSCs in vivo, which likely contributed to its superior antitumor activity. Given that the 5T4-PBD possessed both potent antitumor activity as well as anti-CSC activity, and thus could potentially target bulk tumor cells and CSCs in target-positive indications, it was further evaluated in non-GLP rat toxicology studies that demonstrated excellent in vivo stability with an acceptable safety profile. Taken together, these preclinical data support further development of 5T4-PBD, also known as MEDI0641, against 5T4+ cancer indications. Mol Cancer Ther; 16(8); 1576-87. ©2017 AACR.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Benzodiazepinas/uso terapêutico , Imunoconjugados/uso terapêutico , Pirróis/uso terapêutico , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Benzodiazepinas/efeitos adversos , Benzodiazepinas/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/farmacologia , Masculino , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Pirróis/efeitos adversos , Pirróis/farmacologia , Ratos Sprague-Dawley , Moduladores de Tubulina/efeitos adversos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Clin Cancer Res ; 23(10): 2516-2527, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27780858

RESUMO

Purpose: Locoregional recurrence is a frequent treatment outcome for patients with advanced head and neck squamous cell carcinoma (HNSCC). Emerging evidence suggests that tumor recurrence is mediated by a small subpopulation of uniquely tumorigenic cells, that is, cancer stem cells (CSC), that are resistant to conventional chemotherapy, endowed with self-renewal and multipotency.Experimental Design: Here, we evaluated the efficacy of MEDI0641, a novel antibody-drug conjugate targeted to 5T4 and carrying a DNA-damaging "payload" (pyrrolobenzodiazepine) in preclinical models of HNSCC.Results: Analysis of a tissue microarray containing 77 HNSCC with follow-up of up to 12 years revealed that patients with 5T4high tumors displayed lower overall survival than those with 5T4low tumors (P = 0.038). 5T4 is more highly expressed in head and neck CSC (ALDHhighCD44high) than in control cells (non-CSC). Treatment with MEDI0641 caused a significant reduction in the CSC fraction in HNSCC cells (UM-SCC-11B, UM-SCC-22B) in vitro Notably, a single intravenous dose of 1 mg/kg MEDI0641 caused long-lasting tumor regression in three patient-derived xenograft (PDX) models of HNSCC. MEDI0641 ablated CSC in the PDX-SCC-M0 model, reduced it by five-fold in the PDX-SCC-M1, and two-fold in the PDX-SCC-M11 model. Importantly, mice (n = 12) treated with neoadjuvant, single administration of MEDI0641 prior to surgical tumor removal showed no recurrence for more than 200 days, whereas the control group had 7 recurrences (in 12 mice; P = 0.0047).Conclusions: Collectively, these findings demonstrate that an anti-5T4 antibody-drug conjugate reduces the fraction of CSCs and prevents local recurrence and suggest a novel therapeutic approach for patients with HNSCC. Clin Cancer Res; 23(10); 2516-27. ©2016 AACR.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Imunoconjugados/administração & dosagem , Glicoproteínas de Membrana/imunologia , Animais , Benzodiazepinas/administração & dosagem , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Autorrenovação Celular/imunologia , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imunoconjugados/imunologia , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Pirróis/administração & dosagem , Carcinoma de Células Escamosas de Cabeça e Pescoço , Análise Serial de Tecidos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Neoplasia ; 18(5): 273-281, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27237319

RESUMO

Head and neck squamous cell carcinomas (HNSCC) exhibit a small population of uniquely tumorigenic cancer stem cells (CSC) endowed with self-renewal and multipotency. We have recently shown that IL-6 enhances the survival and tumorigenic potential of head and neck cancer stem cells (i.e. ALDH(high)CD44(high) cells). Here, we characterized the effect of therapeutic inhibition of IL-6 with a novel humanized anti-IL-6 antibody (MEDI5117) using three low-passage patient-derived xenograft (PDX) models of HNSCC. We observed that single agent MEDI5117 inhibited the growth of PDX-SCC-M1 tumors (P < .05). This PDX model was generated from a previously untreated HNSCC. In contrast, MEDI5117 was not effective at reducing overall tumor volume for PDX models representing resistant disease (PDX-SCC-M0, PDX-SCC-M11). Low dose MEDI5117 (3 mg/kg) consistently decreased the fraction of cancer stem cells in PDX models of HNSCC when compared to IgG-treated controls, as follows: PDX-SCC-M0 (P < .001), PDX-SCC-M1 (P < .001), PDX-SCC-M11 (P = .04). Interestingly, high dose MEDI5117 (30 mg/kg) decreased the CSC fraction in the PDX-SCC-M11 model (P = .002), but not in PDX-SCC-M0 and PDX-SCC-M1. MEDI5117 mediated a dose-dependent decrease in the number of orospheres generated by ALDH(high)CD44(high) cells cultured in ultra-low attachment plates (P < .05), supporting an inhibitory effect on head and neck cancer stem cells. Notably, single agent MEDI5117 reduced the overall recurrence rate of PDX-SCC-M0, a PDX generated from the local recurrence of human HNSCC. Collectively, these data demonstrate that therapeutic inhibition of IL-6 with low-dose MEDI5117 decreases the fraction of cancer stem cells, and that adjuvant MEDI5117 inhibits recurrence in preclinical models of HNSCC.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Animais , Biomarcadores , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/mortalidade , Humanos , Camundongos , Recidiva , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Cancer Ther ; 15(4): 689-701, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26880266

RESUMO

HER3/ERBB3 is a kinase-deficient member of the EGFR family receptor tyrosine kinases (RTK) that is broadly expressed and activated in human cancers. HER3 is a compelling cancer target due to its important role in activation of the oncogenic PI3K/AKT pathway. It has also been demonstrated to confer tumor resistance to a variety of cancer therapies, especially targeted drugs against EGFR and HER2. HER3 can be activated by its ligand (heregulin/HRG), which induces HER3 heterodimerization with EGFR, HER2, or other RTKs. Alternatively, HER3 can be activated in a ligand-independent manner through heterodimerization with HER2 in HER2-amplified cells. We developed a fully human mAb against HER3 (KTN3379) that efficiently suppressed HER3 activity in both ligand-dependent and independent settings. Correspondingly, KTN3379 inhibited tumor growth in divergent tumor models driven by either ligand-dependent or independent mechanisms in vitro and in vivo Most intriguingly, while investigating the mechanistic underpinnings of tumor response to KTN3379, we discovered an interesting dichotomy in that PTEN loss, a frequently occurring oncogenic lesion in a broad range of cancer types, substantially blunted the tumor response in HER2-amplified cancer, but not in the ligand-driven cancer. To our knowledge, this represents the first study ascertaining the impact of PTEN loss on the antitumor efficacy of a HER3 mAb. KTN3379 is currently undergoing a phase Ib clinical trial in patients with advanced solid tumors. Our current study may help us optimize patient selection schemes for KTN3379 to maximize its clinical benefits. Mol Cancer Ther; 15(4); 689-701. ©2016 AACR.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Neoplasias/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Expressão Gênica , Humanos , Ligantes , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Receptor ErbB-3/química , Receptor ErbB-3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer Res ; 76(2): 480-90, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26744529

RESUMO

Elevated levels of the proinflammatory cytokine IL6 are associated with poor survival outcomes in many cancers. Antibodies targeting IL6 and its receptor have been developed for chronic inflammatory disease, but they have not yet been shown to clearly benefit cancer patients, possibly due to antibody potency or the settings in which they have been tested. In this study, we describe the development of a novel high-affinity anti-IL6 antibody, MEDI5117, which features an extended half-life and potent inhibitory effects on IL6 biologic activity. MEDI5117 inhibited IL6-mediated activation of STAT3, suppressing the growth of several tumor types driven by IL6 autocrine signaling. In the same models, MEDI5117 displayed superior preclinical activity relative to a previously developed anti-IL6 antibody. Consistent with roles for IL6 in promoting tumor angiogenesis, we found that MEDI5117 inhibited the growth of endothelial cells, which can produce IL6 and support tumorigenesis. Notably, in tumor xenograft assays in mice, we documented the ability of MEDI5117 to enhance the antitumor activities of chemotherapy or gefitinib in combination treatment regimens. MEDI5117 also displayed robust activity on its own against trastuzumab-resistant HER2(+) tumor cells by targeting the CD44(+)CD24(-) cancer stem cell population. Collectively, our findings extend the evidence of important pleiotropic roles of IL6 in tumorigenesis and drug resistance, and offer a preclinical proof of concept for the use of IL6 antibodies in combination regimens to heighten therapeutic responses and overcome drug resistance.


Assuntos
Interleucina-6/metabolismo , Neoplasias/genética , Trastuzumab/uso terapêutico , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Transdução de Sinais , Trastuzumab/administração & dosagem
19.
Neoplasia ; 17(6): 473-80, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26152355

RESUMO

Reprogramming of energy metabolism is one of the emerging hallmarks of cancer. Up-regulation of energy metabolism pathways fuels cell growth and division, a key characteristic of neoplastic disease, and can lead to dependency on specific metabolic pathways. Thus, targeting energy metabolism pathways might offer the opportunity for novel therapeutics. Here, we describe the application of a novel in vivo screening approach for the identification of genes involved in cancer metabolism using a patient-derived pancreatic xenograft model. Lentiviruses expressing short hairpin RNAs (shRNAs) targeting 12 different cell surface protein transporters were separately transduced into the primary pancreatic tumor cells. Transduced cells were pooled and implanted into mice. Tumors were harvested at different times, and the frequency of each shRNA was determined as a measure of which ones prevented tumor growth. Several targets including carbonic anhydrase IX (CAIX), monocarboxylate transporter 4, and anionic amino acid transporter light chain, xc- system (xCT) were identified in these studies and shown to be required for tumor initiation and growth. Interestingly, CAIX was overexpressed in the tumor initiating cell population. CAIX expression alone correlated with a highly tumorigenic subpopulation of cells. Furthermore, CAIX expression was essential for tumor initiation because shRNA knockdown eliminated the ability of cells to grow in vivo. To the best of our knowledge, this is the first parallel in vivo assessment of multiple novel oncology target genes using a patient-derived pancreatic tumor model.


Assuntos
Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , RNA Interferente Pequeno/genética , Animais , Anidrase Carbônica IX , Proteínas de Ligação a DNA/fisiologia , Citometria de Fluxo , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Cancer Ther ; 14(7): 1637-49, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25948294

RESUMO

ADAM17 is the primary sheddase for HER pathway ligands. We report the discovery of a potent and specific ADAM17 inhibitory antibody, MEDI3622, which induces tumor regression or stasis in many EGFR-dependent tumor models. The inhibitory activity of MEDI3622 correlated with EGFR activity both in a series of tumor models across several indications as well in as a focused set of head and neck patient-derived xenograft models. The antitumor activity of MEDI3622 was superior to that of EGFR/HER pathway inhibitors in the OE21 esophageal model and the COLO205 colorectal model suggesting additional activity outside of the EGFR pathway. Combination of MEDI3622 and cetuximab in the OE21 model was additive and eradicated tumors. Proteomics analysis revealed novel ADAM17 substrates that function outside of the HER pathways and may contribute toward the antitumor activity of the monoclonal antibody.


Assuntos
Proteínas ADAM/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Receptores ErbB/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ADAM/imunologia , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab/administração & dosagem , Cetuximab/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Feminino , Células HCT116 , Células HT29 , Humanos , Camundongos Endogâmicos DBA , Camundongos Nus , Neoplasias/imunologia , Neoplasias/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA