Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 18: 1339345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638299

RESUMO

Introduction: Protocadherin-19 (PCDH19)-Clustering Epilepsy (PCE) is a developmental and epileptic encephalopathy caused by loss-of-function variants of the PCDH19 gene on the X-chromosome. PCE affects females and mosaic males while male carriers are largely spared. Mosaic expression of the cell adhesion molecule PCDH19 due to random X-chromosome inactivation is thought to impair cell-cell interactions between mutant and wild type PCDH19-expressing cells to produce the disease. Progress has been made in understanding PCE using rodent models or patient induced pluripotent stem cells (iPSCs). However, rodents do not faithfully model key aspects of human brain development, and patient iPSC models are limited by issues with random X-chromosome inactivation. Methods: To overcome these challenges and model mosaic PCDH19 expression in vitro, we generated isogenic female human embryonic stem cells with either HA-FLAG-tagged PCDH19 (WT) or homozygous PCDH19 knockout (KO) using genome editing. We then mixed GFP-labeled WT and RFP-labeled KO cells and generated human cortical organoids (hCOs). Results: We found that PCDH19 is highly expressed in early (days 20-35) WT neural rosettes where it co-localizes with N-Cadherin in ventricular zone (VZ)-like regions. Mosaic PCE hCOs displayed abnormal cell sorting in the VZ with KO and WT cells completely segregated. This segregation remained robust when WT:KO cells were mixed at 2:1 or 1:2 ratios. PCE hCOs also exhibited altered expression of PCDH19 (in WT cells) and N-Cadherin, and abnormal deep layer neurogenesis. None of these abnormalities were observed in hCOs generated by mixing only WT or only KO (modeling male carrier) cells. Discussion: Our results using the mosaic PCE hCO model suggest that PCDH19 plays a critical role in human VZ radial glial organization and early cortical development. This model should offer a key platform for exploring mechanisms underlying PCE-related cortical hyperexcitability and testing of potential precision therapies.

2.
Stem Cell Reports ; 18(12): 2498-2514, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37995702

RESUMO

Brain organoid methods are complicated by multiple rosette structures and morphological variability. We have developed a human brain organoid technique that generates self-organizing, single-rosette cortical organoids (SOSR-COs) with reproducible size and structure at early timepoints. Rather than patterning a 3-dimensional embryoid body, we initiate brain organoid formation from a 2-dimensional monolayer of human pluripotent stem cells patterned with small molecules into neuroepithelium and differentiated to cells of the developing dorsal cerebral cortex. This approach recapitulates the 2D to 3D developmental transition from neural plate to neural tube. Most monolayer fragments form spheres with a single central lumen. Over time, the SOSR-COs develop appropriate progenitor and cortical laminar cell types as shown by immunocytochemistry and single-cell RNA sequencing. At early time points, this method demonstrates robust structural phenotypes after chemical teratogen exposure or when modeling a genetic neurodevelopmental disorder, and should prove useful for studies of human brain development and disease modeling.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Encéfalo , Diferenciação Celular , Organoides
3.
Cells ; 12(13)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37443734

RESUMO

Neural tube defects (NTDs), including anencephaly and spina bifida, are common major malformations of fetal development resulting from incomplete closure of the neural tube. These conditions lead to either universal death (anencephaly) or severe lifelong complications (spina bifida). Despite hundreds of genetic mouse models of neural tube defect phenotypes, the genetics of human NTDs are poorly understood. Furthermore, pharmaceuticals, such as antiseizure medications, have been found clinically to increase the risk of NTDs when administered during pregnancy. Therefore, a model that recapitulates human neurodevelopment would be of immense benefit to understand the genetics underlying NTDs and identify teratogenic mechanisms. Using our self-organizing single rosette cortical organoid (SOSR-COs) system, we have developed a high-throughput image analysis pipeline for evaluating the SOSR-CO structure for NTD-like phenotypes. Similar to small molecule inhibition of apical constriction, the antiseizure medication valproic acid (VPA), a known cause of NTDs, increases the apical lumen size and apical cell surface area in a dose-responsive manner. GSK3ß and HDAC inhibitors caused similar lumen expansion; however, RNA sequencing suggests VPA does not inhibit GSK3ß at these concentrations. The knockout of SHROOM3, a well-known NTD-related gene, also caused expansion of the lumen, as well as reduced f-actin polarization. The increased lumen sizes were caused by reduced cell apical constriction, suggesting that impingement of this process is a shared mechanism for VPA treatment and SHROOM3-KO, two well-known causes of NTDs. Our system allows the rapid identification of NTD-like phenotypes for both compounds and genetic variants and should prove useful for understanding specific NTD mechanisms and predicting drug teratogenicity.


Assuntos
Anencefalia , Defeitos do Tubo Neural , Disrafismo Espinal , Gravidez , Feminino , Humanos , Camundongos , Animais , Ácido Valproico/farmacologia , Anencefalia/complicações , Anencefalia/genética , Glicogênio Sintase Quinase 3 beta/genética , Camundongos Knockout , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/genética , Disrafismo Espinal/genética , Encéfalo/patologia , Proteínas dos Microfilamentos
4.
bioRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37090564

RESUMO

Neural tube defects (NTDs) including anencephaly and spina bifida are common major malformations of fetal development resulting from incomplete closure of the neural tube. These conditions lead to either universal death (anencephaly) or life-long severe complications (spina bifida). Despite hundreds of genetic mouse models having neural tube defect phenotypes, the genetics of human NTDs are poorly understood. Furthermore, pharmaceuticals such as antiseizure medications have been found clinically to increase the risk of NTDs when administered during pregnancy. Therefore, a model that recapitulates human neurodevelopment would be of immense benefit to understand the genetics underlying NTDs and identify teratogenic mechanisms. Using our self-organizing single rosette spheroid (SOSRS) brain organoid system, we have developed a high-throughput image analysis pipeline for evaluating SOSRS structure for NTD-like phenotypes. Similar to small molecule inhibition of apical constriction, the antiseizure medication valproic acid (VPA), a known cause of NTDs, increases the apical lumen size and apical cell surface area in a dose-responsive manner. This expansion was mimicked by GSK3ß and HDAC inhibitors; however, RNA sequencing suggests VPA does not inhibit GSK3ß at these concentrations. Knockout of SHROOM3, a well-known NTD-related gene, also caused expansion of the lumen as well as reduced f-actin polarization. The increased lumen sizes were caused by reduced cell apical constriction suggesting that impingement of this process is a shared mechanism for VPA treatment and SHROOM3-KO, two well-known causes of NTDs. Our system allows the rapid identification of NTD-like phenotypes for both compounds and genetic variants and should prove useful for understanding specific NTD mechanisms and predicting drug teratogenicity.

5.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168415

RESUMO

Focal cortical dysplasia (FCD) is a common cause of focal epilepsy that typically results from brain mosaic mutations in the mTOR cell signaling pathway. To identify new FCD genes, we developed an in vitro CRISPRi screen in human neurons and used FACS enrichment based on the FCD biomarker, phosphorylated S6 ribosomal protein (pS6). Using whole-genome (110,000 gRNAs) and candidate (129 gRNAs) libraries, we discovered 12 new genes that significantly increase pS6 levels. Interestingly, positive hits were enriched for brain-specific genes, highlighting the effectiveness of using human iPSC-derived induced neurons (iNeurons) in our screen. We investigated the signaling pathways of six candidate genes: LRRC4, EIF3A, TSN, HIP1, PIK3R3, and URI1. All six genes increased phosphorylation of S6. However, only two genes, PIK3R3 and HIP1, caused hyperphosphorylation more proximally in the AKT/mTOR/S6 signaling pathway. Importantly, these two genes have recently been found independently to be mutated in resected brain tissue from FCD patients, supporting the predictive validity of our screen. Knocking down each of the other four genes (LRRC4, EIF3A, TSN, and URI1) in iNeurons caused them to become resistant to the loss of growth factor signaling; without growth factor stimulation, pS6 levels were comparable to growth factor stimulated controls. Our data markedly expand the set of genes that are likely to regulate mTOR pathway signaling in neurons and provide additional targets for identifying somatic gene variants that cause FCD.

6.
Brain ; 143(10): 3025-3040, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32968789

RESUMO

Missense variants in the SCN8A voltage-gated sodium channel gene are linked to early-infantile epileptic encephalopathy type 13, also known as SCN8A-related epilepsy. These patients exhibit a wide spectrum of intractable seizure types, severe developmental delay, movement disorders, and elevated risk of sudden unexpected death in epilepsy. The mechanisms by which SCN8A variants lead to epilepsy are poorly understood, although heterologous expression systems and mouse models have demonstrated altered sodium current properties. To investigate these mechanisms using a patient-specific model, we generated induced pluripotent stem cells from three patients with missense variants in SCN8A: p.R1872>L (Patient 1); p.V1592>L (Patient 2); and p.N1759>S (Patient 3). Using small molecule differentiation into excitatory neurons, induced pluripotent stem cell-derived neurons from all three patients displayed altered sodium currents. Patients 1 and 2 had elevated persistent current, while Patient 3 had increased resurgent current compared to controls. Neurons from all three patients displayed shorter axon initial segment lengths compared to controls. Further analyses focused on one of the patients with increased persistent sodium current (Patient 1) and the patient with increased resurgent current (Patient 3). Excitatory cortical neurons from both patients had prolonged action potential repolarization. Using doxycycline-inducible expression of the neuronal transcription factors neurogenin 1 and 2 to synchronize differentiation of induced excitatory cortical-like neurons, we investigated network activity and response to pharmacotherapies. Both small molecule differentiated and induced patient neurons displayed similar abnormalities in action potential repolarization. Patient induced neurons showed increased burstiness that was sensitive to phenytoin, currently a standard treatment for SCN8A-related epilepsy patients, or riluzole, an FDA-approved drug used in amyotrophic lateral sclerosis and known to block persistent and resurgent sodium currents, at pharmacologically relevant concentrations. Patch-clamp recordings showed that riluzole suppressed spontaneous firing and increased the action potential firing threshold of patient-derived neurons to more depolarized potentials. Two of the patients in this study were prescribed riluzole off-label. Patient 1 had a 50% reduction in seizure frequency. Patient 3 experienced an immediate and dramatic seizure reduction with months of seizure freedom. An additional patient with a SCN8A variant in domain IV of Nav1.6 (p.V1757>I) had a dramatic reduction in seizure frequency for several months after starting riluzole treatment, but then seizures recurred. Our results indicate that patient-specific neurons are useful for modelling SCN8A-related epilepsy and demonstrate SCN8A variant-specific mechanisms. Moreover, these findings suggest that patient-specific neuronal disease modelling offers a useful platform for discovering precision epilepsy therapies.


Assuntos
Epilepsia/genética , Epilepsia/fisiopatologia , Variação Genética/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Adolescente , Adulto , Criança , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade
7.
Bio Protoc ; 8(7)2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30320153

RESUMO

For both disease and basic science research, loss-of-function (LOF) mutations are vitally important. Herein, we provide a simple stream-lined protocol for generating LOF iPSC lines that circumvents the technical challenges of traditional gene-editing and cloning of established iPSC lines by combining the introduction of the CRISPR vector concurrently with episomal reprogramming plasmids into fibroblasts. Our experiments have produced nearly even numbers of all 3 genotypes in autosomal genes. In addition, we provide a detailed approach for maintaining and genotyping 96-well plates of iPSC clones.

8.
Biochimie ; 151: 107-114, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29857184

RESUMO

Quercetin, a common dietary flavone, is a competitive inhibitor of glucose uptake and is also thought to be transported into cells by GLUT1. In this study, we confirm that quercetin is a competitive inhibitor of GLUT1 and also demonstrate that newly synthesized compounds, WZB-117 and BAY-876 are robust inhibitors of GLUT1 in L929 cells. To measure quercetin interaction with L929 cells, we develop a new fluorescent assay using flow cytometry. The binding of quercetin and its inhibitory effects on 2-deoxyglucose (2DG) uptake showed nearly identical dose dependent effects, with both having maximum effects between 50 and 100 µM and similar half maximum effects at 8.9 and 8.5 µM respectively. The interaction of quercetin was rapid with t1/2 of 54 s and the onset and loss of its inhibitory effects on 2DG uptake were equally fast. This suggests that either quercetin is simply binding to surface GLUT1 or its transport in and out of the cell reaches equilibrium very quickly. If quercetin is transported, the co-incubation of quercetin with other glucose inhibitors should block quercetin uptake. However, we observed that WZB-117, an exofacial binding inhibitor of GLUT1 reduced quercetin interaction, while cytochalasin B, an endofacial binding inhibitor, enhanced quercetin interaction, and BAY-876 had no effect on quercetin interaction. Taken together, these data are more consistent with quercetin simply binding to GLUT1, but not actually being transported into L929 cells via the glucose channel in GLUT1.


Assuntos
Desoxiglucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Quercetina/farmacologia , Animais , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Citocalasina B/farmacologia , Fibroblastos/metabolismo , Citometria de Fluxo , Fluorescência , Transportador de Glucose Tipo 1/antagonistas & inibidores , Hidroxibenzoatos/farmacologia , Camundongos , Pirazóis/farmacologia , Quinolinas/farmacologia
9.
Stem Cell Reports ; 9(3): 725-731, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28781079

RESUMO

Specifically ablating genes in human induced pluripotent stem cells (iPSCs) allows for studies of gene function as well as disease mechanisms in disorders caused by loss-of-function (LOF) mutations. While techniques exist for engineering such lines, we have developed and rigorously validated a method of simultaneous iPSC reprogramming while generating CRISPR/Cas9-dependent insertions/deletions (indels). This approach allows for the efficient and rapid formation of genetic LOF human disease cell models with isogenic controls. The rate of mutagenized lines was strikingly consistent across experiments targeting four different human epileptic encephalopathy genes and a metabolic enzyme-encoding gene, and was more efficient and consistent than using CRISPR gene editing of established iPSC lines. The ability of our streamlined method to reproducibly generate heterozygous and homozygous LOF iPSC lines with passage-matched isogenic controls in a single step provides for the rapid development of LOF disease models with ideal control lines, even in the absence of patient tissue.


Assuntos
Reprogramação Celular/genética , Edição de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação com Perda de Função/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular , Heterogeneidade Genética , Instabilidade Genômica , Genótipo , Humanos , Mutação INDEL/genética , RNA Guia de Cinetoplastídeos/metabolismo , Reprodutibilidade dos Testes
10.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1596-1604, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28213125

RESUMO

Huntington's disease (HD) is caused by a mutation in the huntingtin gene (HTT), resulting in profound striatal neurodegeneration through an unknown mechanism. Perturbations in the urea cycle have been reported in HD models and in HD patient blood and brain. In neurons, arginase is a central urea cycle enzyme, and the metal manganese (Mn) is an essential cofactor. Deficient biological responses to Mn, and reduced Mn accumulation have been observed in HD striatal mouse and cell models. Here we report in vivo and ex vivo evidence of a urea cycle metabolic phenotype in a prodromal HD mouse model. Further, either in vivo or in vitro Mn supplementation reverses the urea-cycle pathology by restoring arginase activity. We show that Arginase 2 (ARG2) is the arginase enzyme present in these mouse brain models, with ARG2 protein levels directly increased by Mn exposure. ARG2 protein is not reduced in the prodromal stage, though enzyme activity is reduced, indicating that altered Mn bioavailability as a cofactor leads to the deficient enzymatic activity. These data support a hypothesis that mutant HTT leads to a selective deficiency of neuronal Mn at an early disease stage, contributing to HD striatal urea-cycle pathophysiology through an effect on arginase activity.


Assuntos
Corpo Estriado/metabolismo , Doença de Huntington/metabolismo , Manganês/metabolismo , Neurônios/metabolismo , Ureia/metabolismo , Animais , Arginase/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Doença de Huntington/patologia , Masculino , Camundongos , Neurônios/patologia
11.
PLoS One ; 11(3): e0150372, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26982737

RESUMO

Alterations in DNA damage response and repair have been observed in Huntington's disease (HD). We generated induced pluripotent stem cells (iPSC) from primary dermal fibroblasts of 5 patients with HD and 5 control subjects. A significant fraction of the HD iPSC lines had genomic abnormalities as assessed by karyotype analysis, while none of our control lines had detectable genomic abnormalities. We demonstrate a statistically significant increase in genomic instability in HD cells during reprogramming. We also report a significant association with repeat length and severity of this instability. Our karyotypically normal HD iPSCs also have elevated ATM-p53 signaling as shown by elevated levels of phosphorylated p53 and H2AX, indicating either elevated DNA damage or hypersensitive DNA damage signaling in HD iPSCs. Thus, increased DNA damage responses in the HD genotype is coincidental with the observed chromosomal aberrations. We conclude that the disease causing mutation in HD increases the propensity of chromosomal instability relative to control fibroblasts specifically during reprogramming to a pluripotent state by a commonly used episomal-based method that includes p53 knockdown.


Assuntos
Técnicas de Silenciamento de Genes , Instabilidade Genômica , Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Células Cultivadas , Dano ao DNA , Humanos , Doença de Huntington/genética , Cariotipagem , Pessoa de Meia-Idade , Inibidores da Síntese de Ácido Nucleico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem , Zinostatina/farmacologia
12.
Stem Cells ; 34(1): 27-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26373465

RESUMO

Human induced pluripotent stem cell (iPSC) models of epilepsy are becoming a revolutionary platform for mechanistic studies and drug discovery. The skyrocketing pace of epilepsy gene discovery is vastly outstripping the development of in vivo animal models. Currently, antiepileptic drug prescribing to patients with specific genetic epilepsies is based on small-scale clinical trials and empiricism; however, rapid production of patient-derived iPSC models will allow for precision therapy. We review iPSC-based studies that have already afforded novel discoveries in diseases with epileptic phenotypes, as well as challenges to using iPSC-based neurological disease models. We also discuss iPSC-derived cardiomyocyte studies of arrhythmia-inducing ion channelopathies that exemplify novel drug discovery and use of multielectrode array technology that can be translated to epilepsy research. Beyond initial studies of Rett, Timothy, Phelan-McDermid, and Dravet syndromes, the stage is set for groundbreaking iPSC-based mechanistic and therapeutic discoveries in genetic epilepsies with the potential to impact patient treatment and quality of life.


Assuntos
Epilepsia/genética , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Canalopatias/patologia , Modelos Animais de Doenças , Epilepsia/terapia , Humanos , Canais Iônicos/metabolismo , Fenótipo
13.
Neurobiol Dis ; 73: 204-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25315681

RESUMO

Poorly-defined interactions between environmental and genetic risk factors underlie Parkinson's disease (PD) etiology. Here we tested the hypothesis that human stem cell derived forebrain neuroprogenitors from patients with known familial risk for early onset PD will exhibit enhanced sensitivity to PD environmental risk factors compared to healthy control subjects without a family history of PD. Two male siblings (SM and PM) with biallelic loss-of-function mutations in PARK2 were identified. Human induced pluripotent stem cells (hiPSCs) from SM, PM, and four control subjects with no known family histories of PD or related neurodegenerative diseases were utilized. We tested the hypothesis that hiPSC-derived neuroprogenitors from patients with PARK2 mutations would show heightened cell death, mitochondrial dysfunction, and reactive oxygen species generation compared to control cells as a result of exposure to heavy metals (PD environmental risk factors). We report that PARK2 mutant neuroprogenitors showed increased cytotoxicity with copper (Cu) and cadmium (Cd) exposure but not manganese (Mn) or methyl mercury (MeHg) relative to control neuroprogenitors. PARK2 mutant neuroprogenitors also showed a substantial increase in mitochondrial fragmentation, initial ROS generation, and loss of mitochondrial membrane potential following Cu exposure. Our data substantiate Cu exposure as an environmental risk factor for PD. Furthermore, we report a shift in the lowest observable effect level (LOEL) for greater sensitivity to Cu-dependent mitochondrial dysfunction in patients SM and PM relative to controls, correlating with their increased genetic risk for PD.


Assuntos
Cádmio/metabolismo , Cobre/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neurais/metabolismo , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases , Adulto , Linhagem Celular , Predisposição Genética para Doença , Humanos , Masculino , Manganês/metabolismo , Potencial da Membrana Mitocondrial , Compostos de Metilmercúrio/metabolismo , Mutação , Doença de Parkinson/genética , Fatores de Risco
14.
Hum Mol Genet ; 24(7): 1929-44, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25489053

RESUMO

The essential micronutrient manganese is enriched in brain, especially in the basal ganglia. We sought to identify neuronal signaling pathways responsive to neurologically relevant manganese levels, as previous data suggested that alterations in striatal manganese handling occur in Huntington's disease (HD) models. We found that p53 phosphorylation at serine 15 is the most responsive cell signaling event to manganese exposure (of 18 tested) in human neuroprogenitors and a mouse striatal cell line. Manganese-dependent activation of p53 was severely diminished in HD cells. Inhibitors of ataxia telangiectasia mutated (ATM) kinase decreased manganese-dependent phosphorylation of p53. Likewise, analysis of ATM autophosphorylation and additional ATM kinase targets, H2AX and CHK2, support a role for ATM in the activation of p53 by manganese and that a defect in this process occurs in HD. Furthermore, the deficit in Mn-dependent activation of ATM kinase in HD neuroprogenitors was highly selective, as DNA damage and oxidative injury, canonical activators of ATM, did not show similar deficits. We assessed cellular manganese handling to test for correlations with the ATM-p53 pathway, and we observed reduced Mn accumulation in HD human neuroprogenitors and HD mouse striatal cells at manganese exposures associated with altered p53 activation. To determine if this phenotype contributes to the deficit in manganese-dependent ATM activation, we used pharmacological manipulation to equalize manganese levels between HD and control mouse striatal cells and rescued the ATM-p53 signaling deficit. Collectively, our data demonstrate selective alterations in manganese biology in cellular models of HD manifest in ATM-p53 signaling.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Corpo Estriado/metabolismo , Doença de Huntington/metabolismo , Manganês/metabolismo , Células-Tronco Neurais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Motivos de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular , Corpo Estriado/enzimologia , Dano ao DNA , Modelos Animais de Doenças , Feminino , Humanos , Doença de Huntington/enzimologia , Doença de Huntington/genética , Masculino , Camundongos , Células-Tronco Neurais/enzimologia , Fosforilação , Transdução de Sinais , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
15.
PeerJ ; 1: e224, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24392288

RESUMO

Induced pluripotent stem cells (iPSCs) are becoming mainstream tools to study mechanisms of development and disease. They have a broad range of applications in understanding disease processes, in vitro testing of novel therapies, and potential utility in regenerative medicine. Although the techniques for generating iPSCs are becoming more straightforward, scientists can expend considerable resources and time to establish this technology. A major hurdle is the accurate determination of valid iPSC-like colonies that can be selected for further cloning and characterization. In this study, we describe the use of a gammaretroviral vector encoding a fluorescent marker, mRFP1, to not only monitor the efficiency of initial transduction but also to identify putative iPSC colonies through silencing of mRFP1 gene as a consequence of successful reprogramming.

16.
Neurotoxicology ; 33(6): 1443-1449, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23099318

RESUMO

Manganese (Mn) is an environmental risk factor for Parkinson's disease (PD). Recessive inheritance of PARK2 mutations is strongly associated with early onset PD (EOPD). It is widely assumed that the influence of PD environmental risk factors may be enhanced by the presence of PD genetic risk factors in the genetic background of individuals. However, such interactions may be difficult to predict owing to the complexities of genetic and environmental interactions. Here we examine the potential of human induced pluripotent stem (iPS) cell-derived early neural progenitor cells (NPCs) to model differences in Mn neurotoxicity between a control subject (CA) with no known PD genetic risk factors and a subject (SM) with biallelic loss-of-function mutations in PARK2 and family history of PD but no evidence of PD by neurological exam. Human iPS cells were generated from primary dermal fibroblasts of both subjects. We assessed several outcome measures associated with Mn toxicity and PD. No difference in sensitivity to Mn cytotoxicity or mitochondrial fragmentation was observed between SM and CA NPCs. However, we found that Mn exposure was associated with significantly higher reactive oxygen species (ROS) generation in SM compared to CA NPCs despite significantly less intracellular Mn accumulation. Thus, this report offers the first example of human subject-specific differences in PD-relevant environmental health related phenotypes that are consistent with pathogenic interactions between known genetic and environmental risk factors for PD.


Assuntos
Cloretos/toxicidade , Poluentes Ambientais/toxicidade , Interação Gene-Ambiente , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Intoxicação por Manganês/genética , Mutação , Células-Tronco Neurais/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/genética , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética , Técnicas Biossensoriais , Estudos de Casos e Controles , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cloretos/metabolismo , Relação Dose-Resposta a Droga , Poluentes Ambientais/metabolismo , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Compostos de Manganês/metabolismo , Intoxicação por Manganês/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Exame Neurológico , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Doença de Parkinson Secundária/diagnóstico , Doença de Parkinson Secundária/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Fatores de Tempo
17.
ACS Chem Neurosci ; 3(6): 482-91, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22860217

RESUMO

Recent successes in deriving human-induced pluripotent stem cells (hiPSCs) allow for the possibility of studying human neurons derived from patients with neurological diseases. Concomitant inhibition of the BMP and TGF-ß1 branches of the TGF-ß signaling pathways by the endogenous antagonist, Noggin, and the small molecule SB431542, respectively, induces efficient neuralization of hiPSCs, a method known as dual-SMAD inhibition. The use of small molecule inhibitors instead of their endogenous counterparts has several advantages including lower cost, consistent activity, and the maintenance of xeno-free culture conditions. We tested the efficacy of DMH1, a highly selective small molecule BMP-inhibitor for its potential to replace Noggin in the neuralization of hiPSCs. We compare Noggin and DMH1-induced neuralization of hiPSCs by measuring protein and mRNA levels of pluripotency and neural precursor markers over a period of seven days. The regulation of five of the six markers assessed was indistinguishable in the presence of concentrations of Noggin or DMH1 that have been shown to effectively inhibit BMP signaling in other systems. We observed that by varying the DMH1 or Noggin concentration, we could selectively modulate the number of SOX1 expressing cells, whereas PAX6, another neural precursor marker, remained the same. The level and timing of SOX1 expression have been shown to affect neural induction as well as neural lineage. Our observations, therefore, suggest that BMP-inhibitor concentrations need to be carefully monitored to ensure appropriate expression levels of all transcription factors necessary for the induction of a particular neuronal lineage. We further demonstrate that DMH1-induced neural progenitors can be differentiated into ß3-tubulin expressing neurons, a subset of which also express tyrosine hydroxylase. Thus, the combined use of DMH1, a highly specific BMP-pathway inhibitor, and SB431542, a TGF-ß1-pathway specific inhibitor, provides us with the tools to independently regulate these two pathways through the exclusive use of small molecule inhibitors.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas do Olho/biossíntese , Proteínas de Homeodomínio/biossíntese , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Fatores de Transcrição Box Pareados/biossíntese , Pirazóis/química , Pirazóis/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Proteínas Repressoras/biossíntese , Fatores de Transcrição SOXB1/biossíntese , Adulto , Animais , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas de Transporte/química , Proteínas de Transporte/farmacologia , Criança , Proteínas do Olho/genética , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade , Inibição Neural/fisiologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Fatores de Transcrição SOXB1/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA