Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0288276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37934765

RESUMO

In tropical forests, herbivorous arthropods remove between 7% up to 48% of leaf area, which has forced plants to evolve defense strategies. These strategies influence the palatability of leaves. Palatability, which reflects a syndrome of leaf traits, in turn influences both the abundance and the mean body mass not only of particular arthropod taxa but also of the total communities. In this study, we tested two hypotheses: (H1) The abundance of two important chewer guilds ('leaf chewers' and 'rostrum chewers'), dominant components of arthropod communities, is positively related to the palatability of host trees. (H2) Lower palatability leads to an increased mean body mass of chewers (Jarman-Bell principle). Arthropods were collected by fogging the canopies of 90 tropical trees representing 31 species in three plots at 1000 m and three at 2000 m a.s.l. Palatability was assessed by measuring several 'leaf traits' of each host tree and by conducting a feeding trial with the generalist herbivore Gryllus assimilis (Orthoptera, Gryllidae). Leaf traits provided partial support for H1, as abundance of leaf chewers but not of rostrum chewers was positively affected by the experimentally estimated palatability. There was no support for H2 as neither leaf traits nor experimentally estimated palatability affected the mean body mass of leaf chewers. The mean body mass of rostrum chewers was positively related to palatability. Thus, leaf traits and experimentally estimated palatability influenced the abundance and mean body mass of chewing arthropods on the community level. However, the data were not consistent with the Jarman-Bell principle. Overall, our results suggest that the palatability of leaves is not among the dominant factors influencing abundance and mean body mass of the community of chewing arthropod herbivores. If other factors, such as the microclimate, predation or further (a-)biotic interactions are more important has to be analyzed in refined studies.


Assuntos
Artrópodes , Árvores , Animais , Herbivoria , Florestas , Folhas de Planta
2.
Sci Rep ; 11(1): 24530, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972835

RESUMO

Biodiversity and ecosystem functions are highly threatened by global change. It has been proposed that geodiversity can be used as an easy-to-measure surrogate of biodiversity to guide conservation management. However, so far, there is mixed evidence to what extent geodiversity can predict biodiversity and ecosystem functions at the regional scale relevant for conservation planning. Here, we analyse how geodiversity computed as a compound index is suited to predict the diversity of four taxa and associated ecosystem functions in a tropical mountain hotspot of biodiversity and compare the results with the predictive power of environmental conditions and resources (climate, habitat, soil). We show that combinations of these environmental variables better explain species diversity and ecosystem functions than a geodiversity index and identified climate variables as more important predictors than habitat and soil variables, although the best predictors differ between taxa and functions. We conclude that a compound geodiversity index cannot be used as a single surrogate predictor for species diversity and ecosystem functions in tropical mountain rain forest ecosystems and is thus little suited to facilitate conservation management at the regional scale. Instead, both the selection and the combination of environmental variables are essential to guide conservation efforts to safeguard biodiversity and ecosystem functions.


Assuntos
Biodiversidade , Ecossistema , Meio Ambiente , Clima Tropical , Clima , Florestas , Modelos Teóricos , Solo
3.
Ecology ; 99(9): 2090-2102, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29944730

RESUMO

Morphological traits provide the interface between species and their environment. For example, body size affects the fitness of individuals in various ways. Yet especially for ectotherms, the applicability of general rules of interspecific clines of body size and even more so of other morphological traits is still under debate. Here we tested relationships between elevation (as a proxy for temperature) and productivity with four ecologically relevant morphological traits of orthopteran assemblages that are related to fecundity (body size), dispersal (wing length), jumping ability (hind femur length), and predator detection (eye size). We measured traits of 160 orthopteran species that were sampled along an extensive environmental gradient at Mt. Kilimanjaro (Tanzania), spanning elevations from 790 to 4,410 m above sea level (a.s.l.) with different levels of plant productivity. For traits other than body size, we calculated the residuals from a regression on body length to estimate the variation of traits irrespective of body size. Bayesian analyses revealed that mean body size of assemblages, as well as the means of relative wing length, hind femur length, and eye size, decreased with increasing elevation. Body size and relative eye size also decreased with increasing productivity. Both phylogenetic relationships, as well as species-specific adaptations, contributed to these patterns. Our results suggest that orthopteran assemblages had higher fecundity and better dispersal and escape abilities, as well as better predator detection at higher temperatures (low elevations) than at low temperatures (high elevations). Large body sizes might be advantageous in habitats with low productivity because of a reduced risk of starvation. Likewise, large eye size might be advantageous because of the ability to detect predators in habitats with low vegetation cover, where hiding possibilities are scarce. Our study highlights that changes in temperature and productivity not only lead to interspecific changes in body size but are also related to independent changes of other morphological traits that influence the ecological fit of organisms in their environment.


Assuntos
Ecossistema , Animais , Teorema de Bayes , Tamanho Corporal , Filogenia , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA