Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 34(4): 530-538, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38719470

RESUMO

The application of ribosome profiling has revealed an unexpected abundance of translation in addition to that responsible for the synthesis of previously annotated protein-coding regions. Multiple short sequences have been found to be translated within single RNA molecules, within both annotated protein-coding and noncoding regions. The biological significance of this translation is a matter of intensive investigation. However, current schematic or annotation-based representations of mRNA translation generally do not account for the apparent multitude of translated regions within the same molecules. They also do not take into account the stochasticity of the process that allows alternative translations of the same RNA molecules by different ribosomes. There is a need for formal representations of mRNA complexity that would enable the analysis of quantitative information on translation and more accurate models for predicting the phenotypic effects of genetic variants affecting translation. To address this, we developed a conceptually novel abstraction that we term ribosome decision graphs (RDGs). RDGs represent translation as multiple ribosome paths through untranslated and translated mRNA segments. We termed the latter "translons." Nondeterministic events, such as initiation, reinitiation, selenocysteine insertion, or ribosomal frameshifting, are then represented as branching points. This representation allows for an adequate representation of eukaryotic translation complexity and focuses on locations critical for translation regulation. We show how RDGs can be used for depicting translated regions and for analyzing genetic variation and quantitative genome-wide data on translation for characterization of regulatory modulators of translation.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro , Ribossomos , Ribossomos/metabolismo , Ribossomos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Humanos , Fases de Leitura Aberta , Eucariotos/genética
2.
bioRxiv ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986835

RESUMO

The application of ribosome profiling has revealed an unexpected abundance of translation in addition to that responsible for the synthesis of previously annotated protein-coding regions. Multiple short sequences have been found to be translated within single RNA molecules, both within annotated protein-coding and non-coding regions. The biological significance of this translation is a matter of intensive investigation. However, current schematic or annotation-based representations of mRNA translation generally do not account for the apparent multitude of translated regions within the same molecules. They also do not take into account the stochasticity of the process that allows alternative translations of the same RNA molecules by different ribosomes. There is a need for formal representations of mRNA complexity that would enable the analysis of quantitative information on translation and more accurate models for predicting the phenotypic effects of genetic variants affecting translation. To address this, we developed a conceptually novel abstraction that we term Ribosome Decision Graphs (RDGs). RDGs represent translation as multiple ribosome paths through untranslated and translated mRNA segments. We termed the later 'translons'. Non-deterministic events, such as initiation, re-initiation, selenocysteine insertion or ribosomal frameshifting are then represented as branching points. This representation allows for an adequate representation of eukaryotic translation complexity and focuses on locations critical for translation regulation. We show how RDGs can be used for depicting translated regions, analysis of genetic variation and quantitative genome-wide data on translation for characterisation of regulatory modulators of translation.

3.
J Mol Biol ; 435(14): 168043, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356899

RESUMO

Ribosome profiling (Ribo-Seq) captures a "snapshot" of ribosomes' locations at the entire transcriptome of a cell at sub-codon resolution providing insights into gene expression and enabling the discovery of novel translated regions. RiboGalaxy (https://ribogalaxy.genomicsdatascience.ie/), a Galaxy-based platform for processing Ribo-Seq data is a RiboSeq.Org (https://riboseq.org/) resource. RiboSeq.Org is an online gateway to a set of integrated tools for the processing and analysis of Ribo-Seq data. In this RiboGalaxy update we introduce changes to both the tools available on RiboGalaxy and to how the resource is managed on the backend. For example, in order to improve interoperability between Riboseq.Org resources, we added tools that link RiboGalaxy outputs with Trips-Viz and GWIPS-viz browsers for downstream analysis and visualisation. RiboGalaxy's backend now utilises Ansible configuration management which enhances its stability and jobs are executed within Singularity containers and are managed by Slurm, strengthening reproducibility and performance respectively.


Assuntos
Biossíntese de Proteínas , Perfil de Ribossomos , Software , Reprodutibilidade dos Testes , Perfil de Ribossomos/métodos , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA