Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Evolution ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517121

RESUMO

Gene regulatory divergence is thought to play an important role in adaptation, yet its extent and underlying mechanisms remain largely elusive for local adaptation with gene flow. Local adaptation is widespread in marine species despite generally high connectivity and is often associated with tightly linked genomic architectures, such as chromosomal inversions. To investigate gene regulatory evolution under gene flow and the role of inversions associated with local adaptation to a steep thermal gradient, we generated RNA-seq data from Atlantic silversides (Menidia menidia) from two locally adapted populations and their F1 hybrids, reared under two temperatures. We found substantial divergence in gene expression and thermal plasticity between populations, with up to 31% of genes being differentially expressed. Reduced thermal plasticity, temperature-dependent gene misexpression and the disruption of co-expression networks in hybrids point towards a role of regulatory incompatibilities in local adaptation, particularly under colder temperatures. Chromosomal inversions show an accumulation of regulatory incompatibilities but are not consistently enriched for differentially expressed genes. Together, these results suggest that gene regulation can diverge substantially among populations despite gene flow, partly due to the accumulation of temperature-dependent regulatory incompatibilities within inversions.

2.
Evol Appl ; 17(2): e13602, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343776

RESUMO

Understanding the adaptive potential of populations and species is pivotal for minimizing the loss of biodiversity in this era of rapid climate change. Adaptive potential has been estimated in various ways, including based on levels of standing genetic variation, presence of potentially beneficial alleles, and/or the severity of environmental change. Kokanee salmon, the non-migratory ecotype of sockeye salmon (Oncorhynchus nerka), is culturally and economically important and has already been impacted by the effects of climate change. To assess its climate vulnerability moving forward, we integrated analyses of standing genetic variation, genotype-environment associations, and climate modeling based on sequence and structural genomic variation from 224 whole genomes sampled from 22 lakes in British Columbia and Yukon (Canada). We found that variables for extreme temperatures, particularly warmer temperatures, had the most pervasive signature of selection in the genome and were the strongest predictors of levels of standing variation and of putatively adaptive genomic variation, both sequence and structural. Genomic offset estimates, a measure of climate vulnerability, were significantly correlated with higher increases in extreme warm temperatures, further highlighting the risk of summer heat waves that are predicted to increase in frequency in the future. Levels of standing genetic variation, an important metric for population viability and resilience, were not correlated with genomic offset. Nonetheless, our combined approach highlights the importance of integrating different sources of information and genomic data to formulate more comprehensive and accurate predictions on the vulnerability of populations and species to future climate change.

3.
Genome Biol Evol ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37590950

RESUMO

Amidst the current biodiversity crisis, the availability of genomic resources for declining species can provide important insights into the factors driving population decline. In the early 1990s, the black-legged kittiwake (Rissa tridactyla), a pelagic gull widely distributed across the arctic, subarctic, and temperate zones, suffered a steep population decline following an abrupt warming of sea surface temperature across its distribution range and is currently listed as Vulnerable by the International Union for the Conservation of Nature. Kittiwakes have long been the focus for field studies of physiology, ecology, and ecotoxicology and are primary indicators of fluctuating ecological conditions in arctic and subarctic marine ecosystems. We present a high-quality chromosome-level reference genome and annotation for the black-legged kittiwake using a combination of Pacific Biosciences HiFi sequencing, Bionano optical maps, Hi-C reads, and RNA-Seq data. The final assembly spans 1.35 Gb across 32 chromosomes, with a scaffold N50 of 88.21 Mb and a BUSCO completeness of 97.4%. This genome assembly substantially improves the quality of a previous draft genome, showing an approximately 5× increase in contiguity and a more complete annotation. Using this new chromosome-level reference genome and three more chromosome-level assemblies of Charadriiformes, we uncover several lineage-specific chromosome fusions and fissions, but find no shared rearrangements, suggesting that interchromosomal rearrangements have been commonplace throughout the diversification of Charadriiformes. This new high-quality genome assembly will enable population genomic, transcriptomic, and phenotype-genotype association studies in a widely studied sentinel species, which may provide important insights into the impacts of global change on marine systems.


Assuntos
Charadriiformes , Animais , Charadriiformes/genética , Ecossistema , Rearranjo Gênico , Genômica , Cromossomos/genética
4.
Mol Ecol ; 31(24): 6588-6604, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208020

RESUMO

Recent ecotypic differentiation provides unique opportunities to investigate the genomic basis and architecture of local adaptation, while offering insights into how species form and persist. Sockeye salmon (Oncorhynchus nerka) exhibit migratory and resident ("kokanee") ecotypes, which are further distinguished into shore-spawning and stream-spawning reproductive ecotypes. Here, we analysed 36 sockeye (stream-spawning) and kokanee (stream- and shore-spawning) genomes from a system where they co-occur and have recent common ancestry (Okanagan Lake/River in British Columbia, Canada) to investigate the genomic basis of reproductive and migratory behaviour. Examination of the genomic landscape of differentiation, differences in allele frequencies and genotype-phenotype associations revealed three main blocks of sequence differentiation on chromosomes 7, 12 and 20, associated with migratory behaviour, spawning location and spawning timing. Structural variants identified in these same areas suggest they could contribute to ecotypic differentiation directly as causal variants or via maintenance of their genomic architecture through recombination suppression mechanisms. Genes in these regions were related to spatial memory and swimming endurance (SYNGAP, TPM3), as well as eye and brain development (including SIX6), potentially associated with differences in migratory behaviour and visual habitats across spawning locations, respectively. Additional genes (GREB1L, ROCK1) identified here have been associated with timing of migration in other salmonids and could explain variation in timing of O. nerka spawning. Together, these results based on the joint analysis of sequence and structural variation represent a significant advance in our understanding of the genomic landscape of ecotypic differentiation at different stages in the speciation continuum.


Assuntos
Salmonidae , Animais , Salmonidae/genética , Migração Animal , Salmão/genética , Genômica , Colúmbia Britânica
5.
Proc Biol Sci ; 289(1977): 20220782, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35730151

RESUMO

Background selection (BGS), the effect that purifying selection exerts on sites linked to deleterious alleles, is expected to be ubiquitous across eukaryotic genomes. The effects of BGS reflect the interplay of the rates and fitness effects of deleterious mutations with recombination. A fundamental assumption of BGS models is that recombination rates are invariant over time. However, in some lineages, recombination rates evolve rapidly, violating this central assumption. Here, we investigate how recombination rate evolution affects genetic variation under BGS. We show that recombination rate evolution modifies the effects of BGS in a manner similar to a localized change in the effective population size, potentially leading to underestimation or overestimation of the genome-wide effects of selection. Furthermore, we find evidence that recombination rate evolution in the ancestors of modern house mice may have impacted inferences of the genome-wide effects of selection in that species.


Assuntos
Evolução Molecular , Seleção Genética , Alelos , Animais , Variação Genética , Camundongos , Densidade Demográfica , Recombinação Genética
6.
Mol Ecol ; 31(12): 3323-3341, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35403755

RESUMO

The role of recombination in genome evolution has long been studied in theory, but until recently empirical investigations had been limited to a small number of model species. Here, we compare the recombination landscape and genome collinearity between two populations of the Atlantic silverside (Menidia menidia), a small fish distributed across the steep latitudinal climate gradient of the North American Atlantic coast. We constructed separate linkage maps for locally adapted populations from New York and Georgia and their interpopulation laboratory cross. First, we used one of the linkage maps to improve the current silverside genome assembly by anchoring three large unplaced scaffolds to two chromosomes. Second, we estimated sex-specific recombination rates, finding 2.3-fold higher recombination rates in females than males-one of the most extreme examples of heterochiasmy in a fish. While recombination occurs relatively evenly across female chromosomes, it is restricted to only the terminal ends of male chromosomes. Furthermore, comparisons of female linkage maps revealed suppressed recombination along several massive chromosomal inversions spanning nearly 16% of the genome. These inversions segregate between locally adapted populations and coincide near perfectly with blocks of highly elevated genomic differentiation between wild populations. Finally, we discerned significantly higher recombination rates across chromosomes in the northern population compared to the southern. In addition to providing valuable resources for ongoing evolutionary and comparative genomic studies, our findings represent a striking example of structural variation that impacts recombination between adaptively divergent populations, providing empirical support for theorized genomic mechanisms facilitating adaptation despite gene flow.


Assuntos
Inversão Cromossômica , Recombinação Genética , Animais , Inversão Cromossômica/genética , Mapeamento Cromossômico , Feminino , Peixes , Ligação Genética , Genoma/genética , Masculino , Recombinação Genética/genética
7.
Evolution ; 76(4): 782-798, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35271737

RESUMO

The structure of the genome shapes the distribution of genetic diversity and sequence divergence. To investigate how the relationship between chromosome size and recombination rate affects sequence divergence between species, we combined empirical analyses and evolutionary simulations. We estimated pairwise sequence divergence among 15 species from three different mammalian clades-Peromyscus rodents, Mus mice, and great apes-from chromosome-level genome assemblies. We found a strong significant negative correlation between chromosome size and sequence divergence in all species comparisons within the Peromyscus and great apes clades but not the Mus clade, suggesting that the dramatic chromosomal rearrangements among Mus species may have masked the ancestral genomic landscape of divergence in many comparisons. Our evolutionary simulations showed that the main factor determining differences in divergence among chromosomes of different sizes is the interplay of recombination rate and selection, with greater variation in larger populations than in smaller ones. In ancestral populations, shorter chromosomes harbor greater nucleotide diversity. As ancestral populations diverge, diversity present at the onset of the split contributes to greater sequence divergence in shorter chromosomes among daughter species. The combination of empirical data and evolutionary simulations revealed that chromosomal rearrangements, demography, and divergence times may also affect the relationship between chromosome size and divergence, thus deepening our understanding of the role of genome structure in the evolution of species divergence.


Assuntos
Evolução Molecular , Hominidae , Animais , Cromossomos/genética , Genoma , Hominidae/genética , Mamíferos/genética , Recombinação Genética
8.
Nat Ecol Evol ; 6(4): 355-356, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35177801
10.
Genome Biol Evol ; 13(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964136

RESUMO

The levels and distribution of standing genetic variation in a genome can provide a wealth of insights about the adaptive potential, demographic history, and genome structure of a population or species. As structural variants are increasingly associated with traits important for adaptation and speciation, investigating both sequence and structural variation is essential for wholly tapping this potential. Using a combination of shotgun sequencing, 10x Genomics linked reads and proximity-ligation data (Chicago and Hi-C), we produced and annotated a chromosome-level genome assembly for the Atlantic silverside (Menidia menidia)-an established ecological model for studying the phenotypic effects of natural and artificial selection-and examined patterns of genomic variation across two individuals sampled from different populations with divergent local adaptations. Levels of diversity varied substantially across each chromosome, consistently being highly elevated near the ends (presumably near telomeric regions) and dipping to near zero around putative centromeres. Overall, our estimate of the genome-wide average heterozygosity in the Atlantic silverside is among the highest reported for a fish, or any vertebrate (1.32-1.76% depending on inference method and sample). Furthermore, we also found extreme levels of structural variation, affecting ∼23% of the total genome sequence, including multiple large inversions (> 1 Mb and up to 12.6 Mb) associated with previously identified haploblocks showing strong differentiation between locally adapted populations. These extreme levels of standing genetic variation are likely associated with large effective population sizes and may help explain the remarkable adaptive divergence among populations of the Atlantic silverside.


Assuntos
Peixes/genética , Genoma , Variação Estrutural do Genoma , Animais , Variação Genética , Oryzias/genética , Sintenia
11.
J Hered ; 112(3): 286-302, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33686424

RESUMO

Warming climate and increasing desertification urge the identification of genes involved in heat and dehydration tolerance to better inform and target biodiversity conservation efforts. Comparisons among extant desert-adapted species can highlight parallel or convergent patterns of genome evolution through the identification of shared signatures of selection. We generate a chromosome-level genome assembly for the canyon mouse (Peromyscus crinitus) and test for a signature of parallel evolution by comparing signatures of selective sweeps across population-level genomic resequencing data from another congeneric desert specialist (Peromyscus eremicus) and a widely distributed habitat generalist (Peromyscus maniculatus), that may be locally adapted to arid conditions. We identify few shared candidate loci involved in desert adaptation and do not find support for a shared pattern of parallel evolution. Instead, we hypothesize divergent molecular mechanisms of desert adaptation among deer mice, potentially tied to species-specific historical demography, which may limit or enhance adaptation. We identify a number of candidate loci experiencing selective sweeps in the P. crinitus genome that are implicated in osmoregulation (Trypsin, Prostasin) and metabolic tuning (Kallikrein, eIF2-alpha kinase GCN2, APPL1/2), which may be important for accommodating hot and dry environmental conditions.


Assuntos
Adaptação Fisiológica , Peromyscus , Adaptação Fisiológica/genética , Animais , Clima , Genoma , Peromyscus/genética , Análise de Sequência de DNA
12.
Horm Behav ; 130: 104930, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497708

RESUMO

The predictable oscillation between the light of day and the dark of night across the diel cycle is a powerful selective force that has resulted in anticipatory mechanisms in nearly all taxa. At polar latitude, however, this oscillation becomes highly attenuated during the continuous light of polar day during summer. A general understanding of how animals keep time under these conditions is poorly understood. We tested the hypothesis that the common murre (a seabird, Uria aalge) can use melatonin and corticosterone, hormones associated with timekeeping, to track the diel cycle despite continuous light. We also tested the assumption that common murres breeding during polar summer schedule their colony attendance by time of day and sex, as they do at subpolar latitude. In the Atlantic population, common murres have a plumage color dimorphism associated with fitness-related traits, and we investigated the relationship of this dimorphism with colony attendance, melatonin, and corticosterone. The common murres did not schedule their attendance behavior by time of day or sex, yet they had higher concentrations of melatonin and, to a more limited extent, corticosterone during "night" than "day". Melatonin also linked to behavioral state. The two color morphs tended to have different colony-attendance behavior and melatonin concentrations, lending support for balancing selection maintaining the plumage dimorphism. In common murres, melatonin can signal time of day despite continuous light, and the limited diel variation of corticosterone contributes to the mounting evidence that polar-adapted birds and mammals require little or no diel variation in circulating glucocorticoids during polar day.


Assuntos
Ritmo Circadiano , Melatonina , Animais , Aves , Corticosterona , Luz , Caracteres Sexuais
13.
Mol Ecol ; 29(24): 4749-4753, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32997366

RESUMO

The importance of structural variation in adaptation and speciation is becoming increasingly evident in the literature. Among SVs, copy number variants (CNVs) are known to affect phenotypes through changes in gene expression and can potentially reduce recombination between alleles with different copy numbers. However, little is known about their abundance, distribution and frequency in natural populations. In a "From the Cover" article in this issue of Molecular Ecology, Dorant et al. (2020) present a new cost-effective approach to genotype copy number variants (CNVs) from large reduced-representation sequencing (RRS) data sets in nonmodel organisms, and thus to analyse sequence and structural variation jointly. They show that in American lobsters (Homarus americanus), CNVs exhibit strong population structure and several significant associations with annual variance in sea surface temperature, while SNPs fail to uncover any population structure or genotype-environment associations. Their results clearly illustrate that structural variants like CNVs can potentially store important information on differentiation and adaptive differences that cannot be retrieved from the analysis of sequence variation alone. To better understand the factors affecting the evolution of CNVs and their role in adaptation and speciation, we need to compare and synthesize data from a wide variety of species with different demographic histories and genome structure. The approach developed by Dorant et al. (2020) now allows to gain crucial knowledge on CNVs in a cost-effective way, even in species with limited genomic resources.


Assuntos
Variações do Número de Cópias de DNA , Metagenômica , Variações do Número de Cópias de DNA/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Temperatura
14.
Trends Ecol Evol ; 35(7): 561-572, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32521241

RESUMO

Structural genomic variants (SVs) are ubiquitous and play a major role in adaptation and speciation. Yet, comparative and population genomics have focused predominantly on gene duplications and large-effect inversions. The lack of a common framework for studying all SVs is hampering progress towards a more systematic assessment of their evolutionary significance. Here we (i) review how different types of SVs affect ecological and evolutionary processes; (ii) suggest unifying definitions and recommendations for future studies; and (iii) provide a roadmap for the integration of SVs in ecoevolutionary studies. In doing so, we lay the foundation for population genomics, theoretical, and experimental approaches to understand how the full spectrum of SVs impacts ecological and evolutionary processes.


Assuntos
Evolução Biológica , Genômica , Adaptação Fisiológica , Inversão Cromossômica , Humanos , Metagenômica
15.
Mol Ecol ; 29(7): 1300-1314, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32130752

RESUMO

Organisms that live in deserts offer the opportunity to investigate how species adapt to environmental conditions that are lethal to most plants and animals. In the hot deserts of North America, high temperatures and lack of water are conspicuous challenges for organisms living there. The cactus mouse (Peromyscus eremicus) displays several adaptations to these conditions, including low metabolic rate, heat tolerance, and the ability to maintain homeostasis under extreme dehydration. To investigate the genomic basis of desert adaptation in cactus mice, we built a chromosome-level genome assembly and resequenced 26 additional cactus mouse genomes from two locations in southern California (USA). Using these data, we integrated comparative, population, and functional genomic approaches. We identified 16 gene families exhibiting significant contractions or expansions in the cactus mouse compared to 17 other Myodontine rodent genomes, and found 232 sites across the genome associated with selective sweeps. Functional annotations of candidate gene families and selective sweeps revealed a pervasive signature of selection at genes involved in the synthesis and degradation of proteins, consistent with the evolution of cellular mechanisms to cope with protein denaturation caused by thermal and hyperosmotic stress. Other strong candidate genes included receptors for bitter taste, suggesting a dietary shift towards chemically defended desert plants and insects, and a growth factor involved in lipid metabolism, potentially involved in prevention of dehydration. Understanding how species adapted to deserts will provide an important foundation for predicting future evolutionary responses to increasing temperatures, droughts and desertification in the cactus mouse and other species.


Assuntos
Adaptação Fisiológica/genética , Clima Desértico , Genética Populacional , Peromyscus/genética , Animais , California , Evolução Molecular , Feminino , Variação Genética , Genoma , Genômica , Masculino , Família Multigênica , Seleção Genética
16.
Mol Ecol Resour ; 20(4): 856-870, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32153100

RESUMO

High-throughput sequencing technologies are a proposed solution for accessing the molecular data in historical specimens. However, degraded DNA combined with the computational demands of short-read assemblies has posed significant laboratory and bioinformatics challenges for de novo genome assembly. Linked-read or "synthetic long-read" sequencing technologies, such as 10× Genomics, may provide a cost-effective alternative solution to assemble higher quality de novo genomes from degraded tissue samples. Here, we compare assembly quality (e.g., genome contiguity and completeness, presence of orthogroups) between four new deer mouse (Peromyscus spp.) genomes assembled using linked-read technology and four published genomes assembled from a single shotgun library. At a similar price-point, these approaches produce vastly different assemblies, with linked-read assemblies having overall higher contiguity and completeness, measured by larger N50 values and greater number of genes assembled, respectively. As a proof-of-concept, we used annotated genes from the four Peromyscus linked-read assemblies and eight additional rodent taxa to generate a phylogeny, which reconstructed the expected relationships among species with 100% support. Although not without caveats, our results suggest that linked-read sequencing approaches are a viable option to build de novo genomes from degraded tissues, which may prove particularly valuable for taxa that are extinct, rare or difficult to collect.


Assuntos
Genoma/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Peromyscus/genética , Animais , Biologia Computacional/métodos , Biblioteca Gênica , Anotação de Sequência Molecular/métodos , Filogenia , Análise de Sequência de DNA/métodos
17.
Mol Ecol Resour ; 18(1): 79-90, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28815912

RESUMO

Thanks to a dramatic reduction in sequencing costs followed by a rapid development of bioinformatics tools, genome assembly and annotation have become accessible to many researchers in recent years. Among tetrapods, birds have genomes that display many features that facilitate their assembly and annotation, such as small genome size, low number of repeats and highly conserved genomic structure. However, we found that high genomic heterozygosity could have a great impact on the quality of the genome assembly of the thick-billed murre (Uria lomvia), an arctic colonial seabird. In this study, we tested the performance of three genome assemblers, ray/sscape, soapdenovo2 and platanus, in assembling the highly heterozygous genome of the thick-billed murre. Our results show that platanus, an assembler specifically designed for heterozygous genomes, outperforms the other two approaches and produces a highly contiguous (N50 = 15.8 Mb) and complete genome assembly (93% presence of genes from the Benchmarking Universal Single Copy Ortholog [BUSCO] gene set). Additionally, we annotated the thick-billed murre genome using a homology-based approach that takes advantage of the genomic resources available for birds and other taxa. Our study will be useful for those researchers who are approaching assembly and annotation of highly heterozygous genomes, or genomes of species of conservation concern, and/or who have limited financial resources.


Assuntos
Charadriiformes/genética , Biologia Computacional/métodos , Genoma , Heterozigoto , Anotação de Sequência Molecular/métodos , Animais
18.
Ecol Evol ; 7(7): 2370-2381, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28405300

RESUMO

Investigating the extent (or the existence) of local adaptation is crucial to understanding how populations adapt. When experiments or fitness measurements are difficult or impossible to perform in natural populations, genomic techniques allow us to investigate local adaptation through the comparison of allele frequencies and outlier loci along environmental clines. The thick-billed murre (Uria lomvia) is a highly philopatric colonial arctic seabird that occupies a significant environmental gradient, shows marked phenotypic differences among colonies, and has large effective population sizes. To test whether thick-billed murres from five colonies along the eastern Canadian Arctic coast show genomic signatures of local adaptation to their breeding grounds, we analyzed geographic variation in genome-wide markers mapped to a newly assembled thick-billed murre reference genome. We used outlier analyses to detect loci putatively under selection, and clustering analyses to investigate patterns of differentiation based on 2220 genomewide single nucleotide polymorphisms (SNPs) and 137 outlier SNPs. We found no evidence of population structure among colonies using all loci but found population structure based on outliers only, where birds from the two northernmost colonies (Minarets and Prince Leopold) grouped with birds from the southernmost colony (Gannet), and birds from Coats and Akpatok were distinct from all other colonies. Although results from our analyses did not support local adaptation along the latitudinal cline of breeding colonies, outlier loci grouped birds from different colonies according to their non-breeding distributions, suggesting that outliers may be informative about adaptation and/or demographic connectivity associated with their migration patterns or nonbreeding grounds.

19.
Mol Ecol ; 25(10): 2144-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26946320

RESUMO

Gene flow is a fundamental evolutionary force in adaptation that is especially important to understand as humans are rapidly changing both the natural environment and natural levels of gene flow. Theory proposes a multifaceted role for gene flow in adaptation, but it focuses mainly on the disruptive effect that gene flow has on adaptation when selection is not strong enough to prevent the loss of locally adapted alleles. The role of gene flow in adaptation is now better understood due to the recent development of both genomic models of adaptive evolution and genomic techniques, which both point to the importance of genetic architecture in the origin and maintenance of adaptation with gene flow. In this review, we discuss three main topics on the genomics of adaptation with gene flow. First, we investigate selection on migration and gene flow. Second, we discuss the three potential sources of adaptive variation in relation to the role of gene flow in the origin of adaptation. Third, we explain how local adaptation is maintained despite gene flow: we provide a synthesis of recent genomic models of adaptation, discuss the genomic mechanisms and review empirical studies on the genomics of adaptation with gene flow. Despite predictions on the disruptive effect of gene flow in adaptation, an increasing number of studies show that gene flow can promote adaptation, that local adaptations can be maintained despite high gene flow, and that genetic architecture plays a fundamental role in the origin and maintenance of local adaptation with gene flow.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Fluxo Gênico , Alelos , Animais , Genômica , Humanos , Modelos Genéticos , Plantas , Seleção Genética
20.
J Hered ; 106(3): 238-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25825313

RESUMO

Quaternary glaciations affected the distribution of many species. Here, we investigate whether the Arctic represented a glacial refugium during the Last Glacial Maximum or an area of secondary contact following the ice retreat, by analyzing the genetic population structure of the thick-billed murre (Uria lomvia), a seabird that breeds throughout the North Atlantic, North Pacific and Arctic Oceans. The thick-billed murre is a species of socio-economic importance and faces numerous threats including hunting, oil pollution, gill netting, and climate change. We compared variation in the mitochondrial DNA (mtDNA) control region (n = 424), supplemented by 4 microsatellite loci (n = 445), among thick-billed murres sampled throughout their range. MtDNA data indicated that colonies comprise 4 genetically differentiated groups (Φst = 0.11-0.81): 1) Atlantic Ocean plus New Siberian Islands region, 2) Cape Parry, 3) Chukchi Sea, and 4) Pacific Ocean. Microsatellite variation differed between Atlantic and Pacific populations. Otherwise, little substructure was found within either ocean. Atlantic and Pacific populations appear to have been genetically isolated since the last interglacial period and should be considered separate evolutionary significant units for management. The Chukchi Sea and Cape Parry appear to represent areas of secondary contact, rather than arctic refugial populations.


Assuntos
Charadriiformes/genética , Variação Genética , Genética Populacional , Animais , Regiões Árticas , Mudança Climática , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Fluxo Gênico , Repetições de Microssatélites , Modelos Genéticos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA