Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genetika ; 43(10): 1424-33, 2007 Oct.
Artigo em Russo | MEDLINE | ID: mdl-18069347

RESUMO

The cytological phenotype was studied in a desynaptic form isolated from a population of rye cultivar Vyatka. The primary defect of desynaptic plants was identified as nonhomologous (heterologous) chromosome synapsis, which was observed by electron microscopy of synaptonemal complexes (SCs) in meiotic prophase I. Synapsis defects involved switches of synapsing axial elements to nonhomologous partners, asynapsis in the switching region, and foldbacks formed by the SC lateral elements. Defective bivalent formation was observed at later stages: the univalent number varied and multivalent chromosome associations were observed in single cells in metaphase I. The desynaptic phenotype was controlled by two recessive genes, sy8a and sy8b, which acted and were inherited independently. In a hybrid combination with line Ku-2/63, the desynaptic phenotype was suppressed by the dominant allele of a third gene for inhibitor I; the segregation in hybrid families corresponded to 57:7.


Assuntos
Aberrações Cromossômicas , Pareamento Cromossômico/genética , Cromossomos de Plantas/genética , Secale/genética , Secale/ultraestrutura , Alelos , Meiose/genética , Mutação , Fenótipo
2.
Genetika ; 41(10): 1310-21, 2005 Oct.
Artigo em Russo | MEDLINE | ID: mdl-16316002

RESUMO

Genetic collection of meiotic mutants of winter rye Secale cereale L. (2n = 14) was created. Mutations were detected in inbred F2 generations after self-fertilization of the F1 hybrids, obtained by individual crossing of rye plants (cultivar Vyatka) or weedy rye with plants from autofertile lines. The mutations cause partial or complete plant sterility and are maintained in collection in a heterozygous state. Genetic analysis accompanied by cytogenetic study of meiosis has revealed six mutation types. (1) Nonallelic asynaptic mutations sy1 and sy9 caused the formation of only axial chromosome elements in prophase and anaphase. The synaptonemal complexes (SCs) were absent, the formation of the chromosome "bouquet" was impaired, and all chromosomes were univalent in meiotic metaphase I in 96% (sy1) and 67% (sy2) of cells. (2) Weak asynaptic mutation sy3, which hindered complete termination of synapsis in prophase II. Subterminal asynaptic segments were always observed in the SC, and at least one pair of univalents was present in metaphase I, but the number of cells with univalents did not exceed 2%. (3) Mutations sy2, sy6, sy7, sy8, sy10, and sy19, which caused partially nonhomologous synapsis: change in pairing partners and fold-back chromosome synapsis in prophase I. In metaphase I, the number of univalents varied and multivalents were observed. (4) Mutation mei6, which causes the formation of ultrastructural protrusions on the lateral SC elements, gaps and branching of these elements. (5) Allelic mutations mei8 and mei10, which caused irregular chromatin condensation along chromosomes in prophase I, sticking and fragmentation of chromosomes in metaphase I. (6) Allelic mutations mei5 and mei10, which caused chromosome hypercondensation, defects of the division spindle formation, and random arrest of cells at different meiotic stages. However, these mutations did not affect the formation of microspore envelopes even around the cells, whose development was blocked at prophase I. Analysis of cytological pictures of meiosis in double rye mutants reveled epistatic interaction in the mutation series sy9 > sy1 > sy3 > sy19, which reflects the order of switching these genes in the course of meiosis. The expression of genes sy2 and sy19 was shown to be controlled by modifier genes. Most meiotic mutations found in rye have analogs in other plant species.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Mutação , Secale/genética , Complexo Sinaptonêmico/genética
3.
Cytogenet Genome Res ; 109(1-3): 215-20, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15753580

RESUMO

Spontaneous meiotic mutations of winter rye Secale cereale L. (2n = 14) were revealed in inbred F2 progenies, which were obtained by self-pollination of F1 hybrids resulting from crosses of individual plants of cultivar Vyatka or weedy rye with plants of self-fertile inbred lines. The mutations cause partial or complete sterility, and are maintained in heterozygote condition. Six types of mutations were distinguished as the result of cytological analysis of meiosis and genetic analysis. (1) Plants with nonallelic asynaptic mutations sy1 and sy9 lacked bivalents in 96.8 and 67.0% metaphase I cells, respectively, formed only axial elements but not the mature synaptonemal complex (SC), and had defects in telomere clustering in early prophase I. (2) Weak asynaptic mutant sy3 showed incomplete synapsis at the start of SC degradation at diplotene and lower chiasma number; yet only 2% meiocytes lacked bivalents in MI. (3) Mutations sy2, sy6, sy7, sy8, sy10, and sy19 caused nonhomologous synapsis; i.e., a varying number of univalents and occasional multivalents were observed in MI, which was preceded by switches of pairing partners and fold-back synapsis at mid-prophase I. (4) Mutation mei6 led to the formation of protrusions and minor branched structures of the SC lateral elements. (5) Allelic mutations mei8 and mei8-10 caused irregular chromatin condensation along the chromosome length in prophase I, which was accompanied by chromosome sticking and fragmentation in MI. (6) Allelic mutations mei5 and mei10 determined chromosome supercondensation, caused the disturbance of meiotic spindle assembly, arrested meiosis at various stages but did not affect formation of the pollen wall, thus arrested meiocytes got covered with the pollen wall. Analysis of double mutants revealed recessive epistatic interactions for some mutations; the epistatic group was sy9 > sy1 > sy3 > sy19. This reflects the sequence of meiotic events controlled by the corresponding genes. The expression of sy2 and sy19 proved to be modified by additional genes. Most meiotic mutations found in rye have analogs in other plants.


Assuntos
Meiose/genética , Secale/genética , Pareamento Cromossômico/genética , Cromossomos de Plantas/genética , Mutação , Proteínas de Plantas/genética
4.
Cytogenet Genome Res ; 109(1-3): 221-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15753581

RESUMO

We describe how we are furthering our understanding of meiosis in rye (Secale cereale L.) using a combination of cytogenetic and molecular biological approaches. Fluorescent in situ hybridisation, electron microscopy of synaptonemal complexes, sequencing of meiosis-specific genes, and the immunolocalisation of recombinogenic proteins are being combined to build up phenotypic "identikits" of wild type, asynaptic mutants sy1 and sy9, and desynaptic mutant sy10. From this information, we review the status of our current understanding of the genetic control of meiosis in rye, and consider strategies for determining more precisely the interrelationships between meiosis-specific genes and their products.


Assuntos
Meiose/genética , Proteínas de Plantas/genética , Secale/genética , DNA de Plantas/genética , Corantes Fluorescentes , Genes de Plantas , Triagem de Portadores Genéticos , Microscopia Confocal , Secale/citologia , Secale/ultraestrutura , Triticum/genética
5.
Genetika ; 39(6): 775-82, 2003 Jun.
Artigo em Russo | MEDLINE | ID: mdl-12884516

RESUMO

It is shown that mutations mei8 (irregular condensation and fragmentation of meiotic chromosomes), sy1 (asynapsis), and sy10 (heterologous synapsis) of rye Secale cereal are nonallelic. In double mutants mei8 sy1 and mei8 sy10 both mutations are expressed simultaneously and independently of each other. A study of joint inheritance of mutations sy1 and sy10 revealed their interaction by means of recessive epistasis: the double mutants has the sy10 phenotype. This means that the sy10 gene controls an earlier stage of synapsis in meiotic prophase than the sy1 gene. Mutation mei8 is inherited independently of sy1 but it is linked to sy10 (recombination frequency 26.8 +/- 3.58%).


Assuntos
Meiose , Mutação , Secale/genética , Pareamento Cromossômico , Epistasia Genética , Recombinação Genética
6.
Genetika ; 39(6): 783-90, 2003 Jun.
Artigo em Russo | MEDLINE | ID: mdl-12884517

RESUMO

Genetic analysis has demonstrated that meiotic mutations mei8 (irregular condensation and fragmentation of meiotic chromosomes) and mei10 (chromosome overcompaction) are nonallelic. Mutation mei10 exhibits digenic inheritance (with a segregation ratio of 13:3) in the combinations of crosses studied. It is assumed that the phenotypic expression of mutation mei10 is suppressed by the effect of recessive gene lch1 or lch2 (long chromosomes), both of which have been revealed in one of the parental lines (Mc10). These genes determine weak condensation of meiotic chromosomes. In double mutants mei8 mei10, the mutations are expressed independently of each other. Gene mei10 is linked with gene mei8 (r = 36.8 +/- 5.38%); genes lch1 and lch2 are not linked either with them or with each other. Taking into account the data on the linkage between genes mei10 and sy10 and between mei8 and sy10, the order of genes in the linkage group is shown to the following: mei8-sy10-mei10.


Assuntos
Cromossomos de Plantas , Meiose , Mutação , Secale/genética , Cruzamentos Genéticos , Genes de Plantas , Ligação Genética , Fenótipo , Recombinação Genética
7.
Genetika ; 39(3): 362-9, 2003 Mar.
Artigo em Russo | MEDLINE | ID: mdl-12722636

RESUMO

Inheritance of two spontaneous meiosis-specific mutations with similar cytologic phenotype was studied. Both mutations were independently obtained from two rye populations (Vyatka variety and weedy rye). Both mutations are recessive, allelic, and monogenically inherited; the corresponding gene is designated mei8. The mutant alleles of the gene cause abnormal meiotic chromosome structure expressed as irregular compaction along the chromosome length, chromatin stickiness at all stages of meiosis, and chromosome fragmentation in anaphase I.


Assuntos
Cromossomos de Plantas/fisiologia , Meiose/fisiologia , Mutação , Secale/genética , Anáfase/genética , Cromossomos de Plantas/genética , Cromossomos de Plantas/ultraestrutura , Fertilidade/genética , Genes de Plantas , Genética Populacional , Homozigoto , Meiose/genética
8.
Genetika ; 38(3): 347-56, 2002 Mar.
Artigo em Russo | MEDLINE | ID: mdl-11963563

RESUMO

Partially nonhomologous (heterologous) synapsis of meiotic chromosomes in a spontaneous desynaptic mutant form of rye is determined by two recessive genes, sy2a and sy2b, that have independent expression and inheritance. The third gene, dominant inhibitor suppressing the mutant phenotype, has been revealed in hybrid combinations between sy2 mutants and lines segregating other meiotic mutants: sy10 (heterologous synapsis), sy1, and sy9 (asynapsis). All three genes determining desynapsis (sy2a, sy2b, and I) were shown to be nonallelic to monogenic mutations sy10, sy1, and sy9, inherited independently of them and expressed at later stages of prophase I than the sy10 gene. The possibility of modifying monogenic segregation of mutation sy2 by gametophyte selection for a locus linked to the gene expressed as sy2 at particular frequencies of recombination between this gene and selected locus is discussed.


Assuntos
Pareamento Cromossômico , Mutação , Secale/genética , Diploide , Homozigoto
9.
Genetika ; 38(2): 216-26, 2002 Feb.
Artigo em Russo | MEDLINE | ID: mdl-11898613

RESUMO

The cytological expression of spontaneous mutation sy2 isolated from a population of weedy rye was examined. It was demonstrated that the primary defect of meiosis in the mutant plants is nonhomologous synapsis, which occurs simultaneously with the homologous one. An electron microscope study of the synaptonemal complex (SC) at prophase I showed synaptic abnormalities that manifested as "switches" of synapting axial elements to the nonhomologous partner and the formation of foldbacks of lateral SC elements. The sy2 mutants are characterized by one to two such events per meiosis. Nonhomologous synapsis leads to the appearance of univalents at metaphase I (on average 4.16 +/- 0.022 per meiocyte) and multivalents (on average 0.12 +/- 0.007 per meiocyte). The presence of multivalents in 12.0% of meiocytes at metaphase I may result from recombination in ectopic regions of homology. It is suggested that the sy2 mutation impairs a component of the system that limits synapsis in meiocytes to only homologous chromosome pairs.


Assuntos
Meiose , Mutação , Secale/genética , Pareamento Cromossômico , Diploide , Secale/ultraestrutura
10.
J Cell Sci ; 114(Pt 10): 1875-82, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11329374

RESUMO

The nuclear dispositions of subtelomeric and pericentromeric domains in pollen mother cells (PMCs) were tracked during meiosis in wildtype and two asynaptic mutants of rye (Secale cereale L.) by means of fluorescence in situ hybridization (FISH). Homozygotes for sy1 and sy9 non-allelic mutations form axial elements during leptotene of male meiosis, but fail to form synaptonemal complexes. Consequently, recombination is severely impaired, and high univalency is observed at metaphase I. Simultaneous FISH with pSc200 subtelomeric tandem repeat and CCS1 centromeric sequence revealed that at pre-meiotic interphase the two domains are in a bipolar Rabl orientation in both the PMCs and tapetal cells. At the onset of meiotic prophase, the subtelomeric regions in PMCs of wildtype and sy9 cluster into a typical bouquet conformation. The timing of this event in rye is comparable with that in wheat, and is earlier than that observed in other organisms, such as maize, yeast and mammals. This arrangement is retained until later in leptotene and zygotene when the pericentromeric domains disperse and the subtelomeric clusters fragment. The mutant phenotype of sy9 manifests itself during leptotene to zygotene, when the pericentromeric regions become distinctly more distended than in wildtype, and largely fail to pair during zygotene. This indicates that difference in the nature or timing of chromosome condensation in this region is the cause or consequence of asynapsis. By contrast, sy1 fails to form comparable aggregates of subtelomeric regions at leptotene in only half of the nuclei studied. Instead, two to five aggregates are formed that fail to disperse at later stages of meiotic prophase. In addition, the pericentromeric regions disperse prematurely at leptotene and do not associate in pairs at any subsequent stage. It is supposed that the sy1 mutation could disrupt the nuclear disposition of centromeres and telomeres at the end of pre-meiotic interphase, which could cause, or contribute to, its asynaptic phenotype.


Assuntos
Núcleo Celular/genética , Centrômero/genética , Secale/genética , Complexo Sinaptonêmico/genética , Telômero/genética , Núcleo Celular/metabolismo , Centrômero/metabolismo , DNA de Plantas/análise , Epistasia Genética , Hibridização in Situ Fluorescente , Interfase/genética , Metáfase/fisiologia , Microscopia Confocal , Mutação/fisiologia , Fenótipo , Pólen/genética , Complexo Sinaptonêmico/metabolismo , Telômero/metabolismo
11.
Genetika ; 37(1): 81-90, 2001 Jan.
Artigo em Russo | MEDLINE | ID: mdl-11234429

RESUMO

Analysis of manifestation and inheritance of a new mutation inducing irregular synapsis in rye showed that abnormal phenotype is determined by a recessive allele of the sy19 gene. In the homozygotes for this mutation, even at the light microscopic level, abnormal formation of bivalents is already observed at pachytene-diakinesis. At metaphase I, the univalent frequency varies from 0 to 14; in a few cells, multivalent associations of chromosomes, which are not clearly oriented in the spindle, are detected. Electron microscopy of synaptonemal complexes revealed both homologous and heterologous synapsis in homozygotes for sy19, namely partial loss of the ability to stringent homology search. Analysis of joint inheritance of sy19 and asynaptic sy1 mutations showed that they are nonallelic, inherited independently, and interact by recessive epistasis. The phenotype of double sy1sy19 mutants indicates that the sy19 gene conditioning heterologous synapsis operates at meiosis later than the synaptic gene sy1. The epistatic group of mutations, sy9 > sy1 > sy19 and sy3, was determined.


Assuntos
Cromossomos , Genes de Plantas , Secale/genética , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA