Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Viruses ; 16(4)2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675856

RESUMO

CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative analysis indicated that epsilon crAss-like phages are divided into two putative genera, which were proposed to be named Epsilonunovirus and Epsilonduovirus; CrAssE-Sib belongs to the former. The crAssE-Sib genome contains a diversity-generating retroelement (DGR) cassette with all essential elements, including the reverse transcriptase (RT) and receptor binding protein (RBP) genes. However, this RT contains the GxxxSP motif in its fourth domain instead of the usual GxxxSQ motif found in all known phage and bacterial DGRs. RBP encoded by CrAssE-Sib and other Epsilonunoviruses has an unusual structure, and no similar phage proteins were found. In addition, crAssE-Sib and other Epsilonunoviruses encode conserved prophage repressor and anti-repressors that could be involved in lysogenic-to-lytic cycle switches. Notably, DNA primase sequences of epsilon crAss-like phages are not included in the monophyletic group formed by the DNA primases of all other crAss-like phages. Therefore, epsilon crAss-like phage substantially differ from other crAss-like phages, indicating the need to classify these phages into a separate family.


Assuntos
Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/classificação , Proteínas Virais/genética , Proteínas Virais/metabolismo , Retroelementos , Variação Genética , Prófagos/genética , DNA Viral/genética , DNA Primase/genética , DNA Primase/metabolismo , Genômica/métodos , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo
2.
Vaccines (Basel) ; 12(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675808

RESUMO

The rapid development of vaccines is a crucial objective in modern biotechnology and molecular pharmacology. In this context, conducting research to expedite the selection of a potent immunogen is imperative. The candidate vaccine should induce the production of antibodies that can recognize the immunogenic epitopes of the target protein, resembling the ones found in recovered patients. One major challenge in vaccine development is the absence of straightforward and reliable techniques to determine the extent to which the spectrum of antibodies produced after vaccination corresponds to antibodies found after recovery. This paper describes a newly developed method to detect antibodies specific to immunogenic epitopes of the target protein in blood plasma and to compare them with antibody spectra generated post vaccination. Comparing the antibody pool generated in the human body after recovering from an infectious disease with the pool formed through vaccination can become a universal method for screening candidate vaccines. This method will enable the identification of candidate vaccines that can induce the production of antibodies similar to those generated in response to a natural infection. Implementing this approach will facilitate the rapid development of new vaccines, even when faced with a pandemic.

3.
Viruses ; 16(3)2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38543751

RESUMO

Bacteria of the genus Staphylococcus are significant challenge for medicine, as many species are resistant to multiple antibiotics and some are even to all of the antibiotics we use. One of the approaches to developing new therapeutics to treat staphylococcal infections is the use of bacteriophages specific to these bacteria or the lytic enzymes of such bacteriophages, which are capable of hydrolyzing the cell walls of these bacteria. In this study, a new bacteriophage vB_SepP_134 (St 134) specific to Staphylococcus epidermidis was described. This podophage, with a genome of 18,275 bp, belongs to the Andhravirus genus. St 134 was able to infect various strains of 12 of the 21 tested coagulase-negative Staphylococcus species and one clinical strain from the Staphylococcus aureus complex. The genes encoding endolysin (LysSte134_1) and tail tip lysin (LysSte134_2) were identified in the St 134 genome. Both enzymes were cloned and produced in Escherichia coli cells. The endolysin LysSte134_1 demonstrated catalytic activity against peptidoglycans isolated from S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus warneri. LysSte134_1 was active against S. aureus and S. epidermidis planktonic cells and destroyed the biofilms formed by clinical strains of S. aureus and S. epidermidis.


Assuntos
Bacteriófagos , Endopeptidases , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Bacteriófagos/genética , Staphylococcus , Staphylococcus epidermidis , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes
4.
Viruses ; 16(1)2024 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-38257793

RESUMO

Multidrug-resistant Gram-positive bacteria, including bacteria from the genus Staphylococcus, are currently a challenge for medicine. Therefore, the development of new antimicrobials is required. Promising candidates for new antistaphylococcal drugs are phage endolysins, including endolysins from thermophilic phages against other Gram-positive bacteria. In this study, the recombinant endolysin LysAP45 from the thermophilic Aeribacillus phage AP45 was obtained and characterized. The recombinant endolysin LysAP45 was produced in Escherichia coli M15 cells. It was shown that LysAP45 is able to hydrolyze staphylococcal peptidoglycans from five species and eleven strains. Thermostability tests showed that LysAP45 retained its hydrolytic activity after incubation at 80 °C for at least 30 min. The enzymatically active domain of the recombinant endolysin LysAP45 completely disrupted biofilms formed by multidrug-resistant S. aureus, S. haemolyticus, and S. epidermidis. The results suggested that LysAP45 is a novel thermostable antimicrobial agent capable of destroying biofilms formed by various species of multidrug-resistant Staphylococcus. An unusual putative cell-binding domain was found at the C-terminus of LysAP45. No domains with similar sequences were found among the described endolysins.


Assuntos
Bacillaceae , Bacteriófagos , Endopeptidases , Staphylococcus aureus Resistente à Meticilina , Staphylococcus , Staphylococcus epidermidis , Bacteriófagos/genética , Biofilmes , Escherichia coli/genética
5.
Methods Mol Biol ; 2734: 197-205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38066371

RESUMO

Diabetic foot ulcers occur as a common complication of diabetes. The concomitant infection significantly delays the healing of the ulcers. Antibiotic treatment of infected ulcers is complicated by the formation of microbial biofilms, which are often heterogeneous and resistant to antibiotics. Bacteriophage therapy is considered an additional approach to the treatment of infected wounds. Here, we describe the basic method of application of bacteriophages for the treatment of infected diabetic foot ulcers, including very large ones.


Assuntos
Bacteriófagos , Diabetes Mellitus , Pé Diabético , Infecção dos Ferimentos , Humanos , Pé Diabético/terapia , Pé Diabético/complicações , Antibacterianos/uso terapêutico , Infecção dos Ferimentos/terapia , Cicatrização , Diabetes Mellitus/tratamento farmacológico
6.
Methods Mol Biol ; 2734: 237-243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38066373

RESUMO

Phage therapy can be a useful approach in a number of clinical cases associated with multidrug-resistant (MDR) bacterial infections. In this study, we describe a successful consecutive phage and antibiotic application to cure a 3-month-old girl suffering from severe bronchitis after tracheostomy. Bronchitis was associated with two bacterial agents, MDR Pseudomonas aeruginosa and a rare opportunistic pathogen Dolosigranulum pigrum. The phage cocktail "Pyobacteriophage" containing at least two different phages against isolated MDR P. aeruginosa strain was used via inhalation and nasal drops. Topical application of the phage cocktail removed most of P. aeruginosa cells and contributed to a change in the antimicrobial resistance profile of surviving P. aeruginosa cells. As a result, it became possible to choose and administer an appropriate antibiotic that was effective against both infectious agents. Complete recovery of the infant was recorded.


Assuntos
Bacteriófagos , Bronquite , Infecções por Pseudomonas , Fagos de Pseudomonas , Feminino , Humanos , Lactente , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa , Sistema Respiratório , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia
7.
Methods Mol Biol ; 2734: 301-317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38066377

RESUMO

Production of infectious bacteriophage based on its genome is one of the necessary steps in the pipeline of editing phage genomes and creating synthetic bacteriophages. This process is called "rebooting" of the phage genome. In this chapter, we describe key steps required for successful genome "rebooting" using a native host or intermediate host. A detailed protocol is given for the "rebooting" of the genome of T7 bacteriophage specific to Escherichia coli and bacteriophage KP32_192 that infects Klebsiella pneumoniae.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Saccharomyces cerevisiae/genética , Plasmídeos/genética , Escherichia coli/genética , Recombinação Genética , Clonagem Molecular
8.
Viruses ; 15(12)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38140678

RESUMO

Stenotrophomonas rhizophila was first discovered in soil; it is associated with the rhizosphere and capable of both protecting roots and stimulating plant growth. Therefore, it has a great potential to be used in biocontrol. The study of S. rhizophila phages is important for a further evaluation of their effect on the fitness and properties of host bacteria. A novel phage StenR_269 and its bacterial host S. rhizophila were isolated from a soil sample in the remediation area of a coal mine. Electron microscopy revealed a large capsid (~Ø80 nm) connected with a short tail, which corresponds to the podovirus morphotype. The length of the genomic sequence of the StenR_269 was 66,322 bp and it contained 103 putative genes; 40 of them encoded proteins with predicted functions, 3 corresponded to tRNAs, and the remaining 60 were identified as hypothetical ones. Comparative analysis indicated that the StenR_269 phage had a similar genome organization to that of the unclassified Xanthomonas phage DES1, despite their low protein similarity. In addition, the signature proteins of StenR_269 and DES1 had low similarity and these proteins clustered far from the corresponding proteins of classified phages. Thus, the StenR_269 genome is orphan and the analyzed data suggest a new family in the class Caudoviricetes.


Assuntos
Bacteriófagos , Genoma Viral , Bacteriófagos/genética , Genômica , Proteínas do Capsídeo/genética , Solo
9.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139153

RESUMO

Diversity-generating retroelements (DGRs) are prokaryotic systems providing rapid modification and adaptation of target proteins. In phages, the main targets of DGRs are receptor-binding proteins that are usually parts of tail structures and the variability of such host-recognizing structures enables phage adaptation to changes on the bacterial host surface. Sometimes, more than one target gene containing a hypermutated variable repeat (VR) can be found in phage DGRs. The role of mutagenesis of two functionally different genes is unclear. In this study, several phage genomes that contain DGRs with two target genes were found in the gut virome of healthy volunteers. Bioinformatics analysis of these genes indicated that they encode proteins with different topology; however, both proteins contain the C-type lectin (C-lec) domain with a hypermutated beta-hairpin on its surface. One of the target proteins belongs to a new family of proteins with a specific topology: N-terminal C-lec domain followed by one or more immunoglobulin domains. Proteins from the new family were named tentaclins after TENTACLe + proteIN. The genes encoding such proteins were found in the genomes of prophages and phages from the gut metagenomes. We hypothesized that tentaclins are involved in binding either to bacterial receptors or intestinal/immune cells.


Assuntos
Receptores de Bacteriófagos , Bacteriófagos , Humanos , Receptores de Bacteriófagos/genética , Proteínas de Transporte/genética , Proteínas/genética , Bacteriófagos/genética , Prófagos/genética , Bactérias/genética , Retroelementos
10.
J Clin Med ; 12(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38137770

RESUMO

BACKGROUND AND AIMS: Ulcerative colitis (UC) is a chronic inflammatory disease that affects many people. One of the possible ways to treat UC is fecal microbiota transplantation (FMT). In this study, changes in the intestinal microbiome and clinical outcomes of 20 patients with UC after FMT were estimated. METHODS: FMT enemas were administrated ten times, once a day, and fecal microbiota from three donors was used for each enema. The clinical outcomes were assessed after eight weeks and then via a patient survey. The 16S rRNA profiles of the gut microbiota were compared between three samplings: samples from 20 patients with UC before and after FMT and samples from 18 healthy volunteers. RESULTS: Clinical remission was achieved in 19 (95%) patients at week 8. Adverse events occurred in five patients, including one non-responder. A significant increase in average biodiversity was shown in samples after FMT compared to samples before FMT, as well as a decrease in the proportion of some potentially pathogenic bacteria. CONCLUSION: The efficacy of FMT for UC treatment was confirmed; however, the duration of remission varied substantially, possibly due to different characteristics of the initial microbiota of patients. Targeted analysis of a patient's microbiome before FMT could increase the treatment efficacy.

11.
Biochemistry (Mosc) ; 88(9): 1205-1214, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37770389

RESUMO

Antibodies against the receptor-binding domain of the SARS-CoV-2 spike protein (RBD S-protein) contribute significantly to the humoral immune response during coronavirus infection (COVID-19) and after vaccination. The main focus of the studies of the RBD epitope composition is usually concentrated on the epitopes recognized by the virus-neutralizing antibodies. The role of antibodies that bind to RBD but do not neutralize SARS-CoV-2 remains unclear. In this study, immunochemical properties of the two mouse monoclonal antibodies (mAbs), RS17 and S11, against the RBD were examined. Both mAbs exhibited high affinity to RBD, but they did not neutralize the virus. The epitopes of these mAbs were mapped using phage display: the epitope recognized by the mAb RS17 is located at the N-terminal site of RBD (348-SVYAVNRKRIS-358); the mAb S11 epitope is inside the receptor-binding motif of RBD (452-YRLFRKSN-459). Three groups of sera were tested for presence of antibodies competing with the non-neutralizing mAbs S11 and RS17: (i) sera from the vaccinated healthy volunteers without history of COVID-19; (ii) sera from the persons who had a mild form of COVID-19; (iii) sera from the persons who had severe COVID-19. Antibodies competing with the mAb S11 were found in each group of sera with equal frequency, whereas presence of the antibodies competing with the mAb RS17 in the sera was significantly more frequent in the group of sera obtained from the patients recovered from severe COVID-19 indicating that such antibodies are associated with the severity of COVID-19. In conclusion, despite the clear significance of anti-RBD antibodies in the effective immune response against SARS-CoV-2, it is important to analyze their virus-neutralizing activity and to confirm absence of the antibody-mediated enhancement of infection by the anti-RBD antibodies.


Assuntos
COVID-19 , Animais , Camundongos , Humanos , SARS-CoV-2/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Epitopos de Linfócito B , Anticorpos Antivirais
12.
Microorganisms ; 11(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37764036

RESUMO

The purposeful development of synthetic antibacterial compounds requires an understanding of the relationship between effects of compounds and their chemical structure. This knowledge can be obtained by studying changes in bacteria ultrastructure under the action of antibacterial compounds of a certain chemical structure. Our study was aimed at examination of ultrastructural changes in S. aureus cells caused by polycationic amphiphile based on 1,4‒diazabicyclo[2.2.2]octane (DL412), ciprofloxacin and their hybrid (DL5Cip6); the samples were incubated for 15 and 45 min. DL412 first directly interacted with bacterial cell wall, damaging it, then penetrated into the cell and disrupted cytoplasm. Ciprofloxacin penetrated into cell without visually damaging the cell wall, but altered the cell membrane and cytoplasm, and inhibited the division of bacteria. The ultrastructural characteristics of S. aureus cells damaged by the hybrid clearly differed from those under ciprofloxacin or DL412 action. Signs associated with ciprofloxacin predominated in cell damage patterns from the hybrid. We studied the effect of ciprofloxacin, DL412 and their hybrid on S. aureus biofilm morphology using paraffin sections. Clear differences in compound effects on S. aureus biofilm (45 min incubation) were observed. The results obtained allow us to recommend this simple and cheap approach for the initial assessment of antibiofilm properties of synthesized compounds.

13.
Microorganisms ; 11(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985265

RESUMO

Virus genomics as a separate branch of biology has emerged relatively recently [...].

14.
Viruses ; 16(1)2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275953

RESUMO

Stenotrophomonas maltophilia was discovered as a soil bacterium associated with the rhizosphere. Later, S. maltophilia was found to be a multidrug-resistant hospital-associated pathogen. Lytic bacteriophages are prospective antimicrobials; therefore, there is a need for the isolation and characterization of new Stenotrophomonas phages. The phage StenM_174 was isolated from litter at a poultry farm using a clinical strain of S. maltophilia as the host. StenM_174 reproduced in a wide range of clinical and environmental strains of Stenotrophomonas, mainly S. maltophilia, and it had a podovirus morphotype. The length of the genomic sequence of StenM_174 was 42,956 bp, and it contained 52 putative genes. All genes were unidirectional, and 31 of them encoded proteins with predicted functions, while the remaining 21 were identified as hypothetical ones. Two tail spike proteins of StenM_174 were predicted using AlphaFold2 structural modeling. A comparative analysis of the genome shows that the Stenotrophomonas phage StenM_174, along with the phages Ponderosa, Pepon, Ptah, and TS-10, can be members of the new putative genus Ponderosavirus in the Autographiviridae family. In addition, the analyzed data suggest a new subfamily within this family.


Assuntos
Bacteriófagos , Caudovirales , Stenotrophomonas maltophilia , Stenotrophomonas/genética , Estudos Prospectivos , Caudovirales/genética , Stenotrophomonas maltophilia/genética , Genoma Viral
15.
Viruses ; 14(12)2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36560737

RESUMO

Aeromonas popoffii is one of the environmental Aeromonas species. A number of factors of virulence have been described for this species and it has been reported as a causative agent of urinary tract infection. The first A. popoffii bacteriophage AerP_220 along with its host strain A. popoffii CEMTC 4062 were isolated from river water. The phage has a podovirus morphotype, shows a narrow host range and is lytic against the host strain. The AerP_220 genome comprises 45,207 bp and does not contain genes responsible for antibiotic resistance and toxin production. Fifty-nine co-directional putative ORFs were found in the AerP_220 genome. Thirty-three ORFs encoded proteins with predicted functions; the products of 26 ORFs were hypothetical proteins. AerP_220 genome analysis revealed that this phage can be considered a novel species within the Autographiviridae family. Comparative genomic and proteomic analysis revealed that AerP_220 along with the Aeromonas phage vB_AspA_Tola (OM913599) are members of a new putative Tolavirus genus in the family Autographiviridae. The Gajwadongvirus and proposed Tolavirus genera along with Pantoea phage Nufs112 and phage Reminis could form a new Tolavirinae subfamily within the Autographiviridae family.


Assuntos
Aeromonas , Bacteriófagos , Proteômica , Aeromonas/genética , Genômica , Genoma Viral , Filogenia
16.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430159

RESUMO

Since the onset of the COVID-19 pandemic, numerous publications have appeared describing autoimmune pathologies developing after a coronavirus infection, with several papers reporting autoantibody production during the acute period of the disease. Several viral diseases are known to trigger autoimmune processes, and the appearance of catalytic antibodies with DNase activity is one of the earliest markers of several autoimmune pathologies. Therefore, we analyzed whether IgG antibodies from blood plasma of SARS-CoV-2 patients after recovery could bind and hydrolyze DNA. We analyzed how vaccination of patients with adenovirus Sputnik V vaccine influences the production of abzymes with DNase activity. Four groups were selected for the analysis, each containing 25 patients according to their relative titers of antibodies to S-protein: with high and median titers, vaccinated with Sputnik V with high titers, and a control group of donors with negative titers. The relative titers of antibodies against DNA and the relative DNase activity of IgGs depended very much on the individual patient and the donor, and no significant correlation was found between the relative values of antibodies titers and their DNase activity. Our results indicate that COVID-19 disease and vaccination with adenoviral Sputnik V vaccine do not result in the development or enhancement of strong autoimmune reactions as in the typical autoimmune diseases associated with the production of anti-DNA and DNA hydrolyzing antibodies.


Assuntos
Anticorpos Catalíticos , COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2 , Pandemias , Anticorpos Antinucleares , DNA , Imunoglobulina G , Desoxirribonucleases
17.
Viruses ; 14(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215981

RESUMO

Although variola virus (VARV) has been eradicated through widespread vaccination, other orthopoxviruses pathogenic for humans circulate in nature. Recently, new orthopoxviruses, including some able to infect humans, have been found and their complete genomes have been sequenced. Questions about the orthopoxvirus mutation rate and the emergence of new threats to humankind as a result of the evolution of circulating orthopoxviruses remain open. Based on contemporary data on ancient VARV DNA and DNA of new orthopoxvirus species, an analysis of the molecular evolution of orthopoxviruses was carried out and the timescale of their emergence was estimated. It was calculated that the orthopoxviruses of the Old and New Worlds separated approximately 40,000 years ago; the recently discovered Akhmeta virus and Alaskapox virus separated from other orthopoxviruses approximately 10,000-20,000 years ago; the rest of modern orthopoxvirus species originated from 1700 to 6000 years ago, with the exception of VARV, which emerged in approximately 300 AD. Later, there was a separation of genetic variants of some orthopoxvirus species, so the monkeypox virus West African subtype originated approximately 600 years ago, and the VARV minor alastrim subtype emerged approximately 300 years ago.


Assuntos
Evolução Molecular , Orthopoxvirus/genética , Infecções por Poxviridae/veterinária , Animais , Bases de Dados Genéticas , Taxa de Mutação , Orthopoxvirus/classificação , Filogenia , Infecções por Poxviridae/virologia
18.
Viruses ; 13(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34452359

RESUMO

Tick-borne encephalitis virus (TBEV) causes 5-7 thousand cases of human meningitis and encephalitis annually. The neutralizing and protective antibody ch14D5 is a potential therapeutic agent. This antibody exhibits a high affinity for binding with the D3 domain of the glycoprotein E of the Far Eastern subtype of the virus, but a lower affinity for the D3 domains of the Siberian and European subtypes. In this study, a 2.2-fold increase in the affinity of single-chain antibody sc14D5 to D3 proteins of the Siberian and European subtypes of the virus was achieved using rational design and computational modeling. This improvement can be further enhanced in the case of the bivalent binding of the full-length chimeric antibody containing the identified mutation.


Assuntos
Anticorpos Antivirais/imunologia , Desenho Assistido por Computador , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , Sítios de Ligação de Anticorpos , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/terapia , Humanos , Camundongos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/uso terapêutico , Proteínas do Envelope Viral/imunologia
19.
Int J Mol Sci ; 21(14)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674504

RESUMO

Bioluminescent proteins are widely used as reporter molecules in various in vitro and in vivo assays. The smallest isoform of Metridia luciferase (MLuc7) is a highly active, naturally secreted enzyme which, along with other luciferase isoforms, is responsible for the bright bioluminescence of marine copepod Metridia longa. In this study, we report the construction of two variants of a hybrid protein consisting of MLuc7 and 14D5a single-chain antibody to the surface glycoprotein E of tick-borne encephalitis virus as a model fusion partner. We demonstrate that, whereas fusion of a single-chain antibody to either N- or C-terminus of MLuc7 does not affect its bioluminescence properties, the binding site on the single-chain antibody influences its binding capacity. The affinity of 14D5a-MLuc7 hybrid protein (KD = 36.2 nM) where the C-terminus of the single-chain antibody was fused to the N-terminus of MLuc7, appeared to be 2.5-fold higher than that of the reverse, MLuc7-14D5a (KD = 87.6 nM). The detection limit of 14D5a-MLuc7 hybrid protein was estimated to be 45 pg of the recombinant glycoprotein E. Although the smallest isoform of M. longa luciferase was tested as a fusion partner only with a single-chain antibody, it is reasonable to suppose that MLuc7 can also be successfully used as a partner for genetic fusion with other proteins.


Assuntos
Copépodes/genética , Luciferases/genética , Isoformas de Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Animais , Clonagem Molecular/métodos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Glicoproteínas/genética , Medições Luminescentes/métodos , Anticorpos de Cadeia Única/genética
20.
Arch Virol ; 164(10): 2637-2640, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31372754

RESUMO

A novel lytic Raoultella phage, RP180, was isolated and characterized. The RP180 genome has 44,851 base pairs and contains 65 putative genes, 35 of them encoding proteins whose functions were predicted based on sequence similarity to known proteins. The RP180 genome possesses a gene synteny typical of members of the subfamily Guernseyvirinae. Phylogenetic analysis of the RP180 genome and similar phage genomes revealed that phage RP180 is the first member of the genus Kagunavirus, subfamily Guernseyvirinae, that is specific for Raoultella sp. The genome of RP180 encodes a putative protein with similarity to CRISPR-like Cas4 nucleases, which belong to the pfam12705/PDDEXK_1 family. Cas4-like proteins of this family have been shown to interfere with the bacterial host type II-C CRISPR-Cas system.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Enterobacteriaceae/virologia , Filogenia , Siphoviridae/classificação , Siphoviridae/isolamento & purificação , Bacteriólise , Bacteriófagos/genética , Genoma Viral , Microscopia Eletrônica de Transmissão , Análise de Sequência de DNA , Siphoviridae/genética , Sintenia , Proteínas Virais/genética , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA