Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894817

RESUMO

Colon cancer is a leading cause of death worldwide. Identification of new molecular factors governing the invasiveness of colon cancer holds promise in developing screening and targeted therapeutic methods. The Tyrosine Kinase Substrate with four SH3 domains (TKS4) and the CD2-associated protein (CD2AP) have previously been linked to dynamic actin assembly related processes and cancer cell migration, although their co-instructive role during tumor formation remained unknown. Therefore, this study was designed to investigate the TKS4-CD2AP interaction and study the interdependent effect of TKS4/CD2AP on oncogenic events. We identified CD2AP as a novel TKS4 interacting partner via co-immunoprecipitation-mass spectrometry methods. The interaction was validated via Western blot (WB), immunocytochemistry (ICC) and proximity ligation assay (PLA). The binding motif of CD2AP was explored via peptide microarray. To uncover the possible cooperative effects of TKS4 and CD2AP in cell movement and in epithelial-mesenchymal transition (EMT), we performed gene silencing and overexpressing experiments. Our results showed that TKS4 and CD2AP form a scaffolding protein complex and that they can regulate migration and EMT-related pathways in HCT116 colon cancer cells. This is the first study demonstrating the TKS4-CD2AP protein-protein interaction in vitro, their co-localization in intact cells, and their potential interdependent effects on partial-EMT in colon cancer.


Assuntos
Neoplasias do Colo , Transição Epitelial-Mesenquimal , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Neoplasias do Colo/genética , Proteínas do Citoesqueleto/metabolismo
2.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955935

RESUMO

Tyrosine kinase substrate with four SH3 domains (Tks4) scaffold protein plays roles in cell migration and podosome formation and regulates systemic mechanisms such as adult bone homeostasis and adipogenesis. Mutations in the Tks4 gene (SH3PXD2b) cause a rare developmental disorder called Frank-Ter Haar syndrome (FTHS), which leads to heart abnormalities, bone tissue defects, and reduced adiposity. We aimed to produce a human stem cell-based in vitro FTHS model system to study the effects of the loss of the Tks4 protein in different cell lineages and the accompanying effects on the cell signalome. To this end, we used CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated (Cas9)) to knock out the SH3PXD2b gene in the HUES9 human embryonic stem cell line (hESC), and we obtained stable homo- and heterozygous knock out clones for use in studying the potential regulatory roles of Tks4 protein in embryonic stem cell biology. Based on pluripotency marker measurements and spontaneous differentiation capacity assays, we concluded that the newly generated Tks4-KO HUES9 cells retained their embryonic stem cell characteristics. We propose that the Tks4-KO HUES9 cells could serve as a tool for further cell differentiation studies to investigate the involvement of Tks4 in the complex disorder FTHS. Moreover, we successfully differentiated all of the clones into mesenchymal stem cells (MSCs). The derived MSC cultures showed mesenchymal morphology and expressed MSC markers, although the expression levels of mesodermal and osteogenic marker genes were reduced, and several EMT (epithelial mesenchymal transition)-related features were altered in the Tks4-KO MSCs. Our results suggest that the loss of Tks4 leads to FTHS by altering cell lineage differentiation and cell maturation processes, rather than by regulating embryonic stem cell potential.


Assuntos
Cardiopatias Congênitas , Células-Tronco Embrionárias Humanas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Criança , Anormalidades Craniofaciais , Deficiências do Desenvolvimento/genética , Cardiopatias Congênitas/genética , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Osteocondrodisplasias/congênito , Doenças Raras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA