RESUMO
Advancing chimeric antigen receptor (CAR)-engineered T cells for the treatment of solid tumors is a major focus in the field of cellular immunotherapy. Several hurdles have hindered similar CAR T cell clinical responses in solid tumors as seen in hematological malignancies. These challenges include on-target off-tumor toxicities, which have inspired efforts to optimize CARs for improved tumor antigen selectivity and overall safety. We recently developed a CAR T cell therapy targeting prostate stem cell antigen (PSCA) for prostate and pancreatic cancers, showing improved preclinical antitumor activity and T cell persistence by optimizing the intracellular co-stimulatory domain. Similar studies were undertaken to optimize HER2-directed CAR T cells with modifications to the intracellular co-stimulatory domain for selective targeting of breast cancer brain metastasis. In the present study, we evaluate various nonsignaling extracellular spacers in these CARs to further improve tumor antigen selectivity. Our findings suggest that length and structure of the extracellular spacer can dictate the ability of CARs to selectively target tumor cells with high antigen density, while sparing cells with low antigen density. This study contributes to CAR construct design considerations and expands our knowledge of tuning solid tumor CAR T cell therapies for improved safety and efficacy.
RESUMO
Despite recent therapeutic advances, metastatic castration-resistant prostate cancer (mCRPC) remains lethal. Chimeric antigen receptor (CAR) T cell therapies have demonstrated durable remissions in hematological malignancies. We report results from a phase 1, first-in-human study of prostate stem cell antigen (PSCA)-directed CAR T cells in men with mCRPC. The starting dose level (DL) was 100 million (M) CAR T cells without lymphodepletion (LD), followed by incorporation of LD. The primary end points were safety and dose-limiting toxicities (DLTs). No DLTs were observed at DL1, with a DLT of grade 3 cystitis encountered at DL2, resulting in addition of a new cohort using a reduced LD regimen + 100 M CAR T cells (DL3). No DLTs were observed in DL3. Cytokine release syndrome of grade 1 or 2 occurred in 5 of 14 treated patients. Prostate-specific antigen declines (>30%) occurred in 4 of 14 patients, as well as radiographic improvements. Dynamic changes indicating activation of peripheral blood endogenous and CAR T cell subsets, TCR repertoire diversity and changes in the tumor immune microenvironment were observed in a subset of patients. Limited persistence of CAR T cells was observed beyond 28 days post-infusion. These results support future clinical studies to optimize dosing and combination strategies to improve durable therapeutic outcomes. ClinicalTrials.gov identifier NCT03873805 .
Assuntos
Antígenos de Neoplasias , Proteínas Ligadas por GPI , Imunoterapia Adotiva , Proteínas de Neoplasias , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/terapia , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/patologia , Idoso , Pessoa de Meia-Idade , Antígenos de Neoplasias/imunologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Proteínas Ligadas por GPI/imunologia , Proteínas de Neoplasias/imunologia , Receptores de Antígenos Quiméricos/imunologia , Metástase Neoplásica , Linfócitos T/imunologia , Linfócitos T/transplante , Antígeno Prostático Específico/sangueRESUMO
Chimeric antigen receptor (CAR) T cell therapy has led to impressive clinical responses in patients with hematological malignancies; however, its effectiveness in patients with solid tumors has been limited. While CAR T cells for the treatment of advanced prostate and pancreas cancer, including those targeting prostate stem cell antigen (PSCA), are being clinically evaluated and are anticipated to show bioactivity, their safety and the impact of the immunosuppressive tumor microenvironment (TME) have not been faithfully explored preclinically. Using a novel human PSCA knockin (hPSCA-KI) immunocompetent mouse model, we evaluated the safety and therapeutic efficacy of PSCA-CAR T cells. We demonstrated that cyclophosphamide (Cy) pre-conditioning significantly modified the immunosuppressive TME and was required to uncover the efficacy of PSCA-CAR T cells in metastatic prostate and pancreas cancer models, with no observed toxicities in normal tissues with endogenous expression of PSCA. This combination dampened the immunosuppressive TME, generated pro-inflammatory myeloid and T cell signatures in tumors, and enhanced the recruitment of antigen-presenting cells, as well as endogenous and adoptively transferred T cells, resulting in long-term anti-tumor immunity.
Assuntos
Ciclofosfamida/farmacologia , Imunoterapia Adotiva/métodos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Pancreáticas/terapia , Neoplasias da Próstata/terapia , Microambiente Tumoral , Animais , Antígenos de Neoplasias/genética , Apoptose , Proliferação de Células , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agonistas Mieloablativos/farmacologia , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with "on-target off-tumor" activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies.
RESUMO
Purpose: Metastasis to the brain from breast cancer remains a significant clinical challenge, and may be targeted with CAR-based immunotherapy. CAR design optimization for solid tumors is crucial due to the absence of truly restricted antigen expression and potential safety concerns with "on-target off-tumor" activity. Here, we have optimized HER2-CAR T cells for the treatment of breast to brain metastases, and determined optimal second-generation CAR design and route of administration for xenograft mouse models of breast metastatic brain tumors, including multifocal and leptomeningeal disease.Experimental Design: HER2-CAR constructs containing either CD28 or 4-1BB intracellular costimulatory signaling domains were compared for functional activity in vitro by measuring cytokine production, T-cell proliferation, and tumor killing capacity. We also evaluated HER2-CAR T cells delivered by intravenous, local intratumoral, or regional intraventricular routes of administration using in vivo human xenograft models of breast cancer that have metastasized to the brain.Results: Here, we have shown that HER2-CARs containing the 4-1BB costimulatory domain confer improved tumor targeting with reduced T-cell exhaustion phenotype and enhanced proliferative capacity compared with HER2-CARs containing the CD28 costimulatory domain. Local intracranial delivery of HER2-CARs showed potent in vivo antitumor activity in orthotopic xenograft models. Importantly, we demonstrated robust antitumor efficacy following regional intraventricular delivery of HER2-CAR T cells for the treatment of multifocal brain metastases and leptomeningeal disease.Conclusions: Our study shows the importance of CAR design in defining an optimized CAR T cell, and highlights intraventricular delivery of HER2-CAR T cells for treating multifocal brain metastases. Clin Cancer Res; 24(1); 95-105. ©2017 AACR.