Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
BMC Bioinformatics ; 21(1): 142, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293239

RESUMO

BACKGROUND: An important process for plant survival is the immune system. The induced systemic resistance (ISR) triggered by beneficial microbes is an important cost-effective defense mechanism by which plants are primed to an eventual pathogen attack. Defense mechanisms such as ISR depend on an accurate and context-specific regulation of gene expression. Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRNs). Here, we explore the regulatory mechanism of the ISR defense response triggered by the beneficial bacterium Paraburkholderia phytofirmans PsJN in Arabidopsis thaliana plants infected with Pseudomonas syringae DC3000. To achieve this, a GRN underlying the ISR response was inferred using gene expression time-series data of certain defense-related genes, differential evolution, and threshold Boolean networks. RESULTS: One thousand threshold Boolean networks were inferred that met the restriction of the desired dynamics. From these networks, a consensus network was obtained that helped to find plausible interactions between the genes. A representative network was selected from the consensus network and biological restrictions were applied to it. The dynamics of the selected network showed that the largest attractor, a limit cycle of length 3, represents the final stage of the defense response (12, 18, and 24 h). Also, the structural robustness of the GRN was studied through the networks' attractors. CONCLUSIONS: A computational intelligence approach was designed to reconstruct a GRN underlying the ISR defense response in plants using gene expression time-series data of A. thaliana colonized by P. phytofirmans PsJN and subsequently infected with P. syringae DC3000. Using differential evolution, 1000 GRNs from time-series data were successfully inferred. Through the study of the network dynamics of the selected GRN, it can be concluded that it is structurally robust since three mutations were necessary to completely disarm the Boolean trajectory that represents the biological data. The proposed method to reconstruct GRNs is general and can be used to infer other biologically relevant networks to formulate new biological hypotheses.


Assuntos
Arabidopsis/genética , Arabidopsis/microbiologia , Resistência à Doença/genética , Redes Reguladoras de Genes , Burkholderiaceae/fisiologia , Pseudomonas syringae
2.
PLoS One ; 14(8): e0221358, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31437216

RESUMO

Plant defense responses to biotic stresses are complex biological processes, all governed by sophisticated molecular regulations. Induced systemic resistance (ISR) is one of these defense mechanisms where beneficial bacteria or fungi prime plants to resist pathogens or pest attacks. In ISR, the defense arsenal in plants remains dormant and it is only triggered by an infection, allowing a better allocation of plant resources. Our group recently described that the well-known beneficial bacterium Paraburkholderia phytofirmans PsJN is able to induce Arabidopsis thaliana resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 through ISR, and that ethylene, jasmonate and salicylic acid are involved in this protection. Nevertheless, the molecular networks governing this beneficial interaction remain unknown. To tackle this issue, we analyzed the temporal changes in the transcriptome of PsJN-inoculated plants before and after being infected with Pst DC3000. These data were used to perform a gene network analysis to identify highly connected transcription factors. Before the pathogen challenge, the strain PsJN regulated 405 genes (corresponding to 1.8% of the analyzed genome). PsJN-inoculated plants presented a faster and stronger transcriptional response at 1-hour post infection (hpi) compared with the non-inoculated plants, which presented the highest transcriptional changes at 24 hpi. A principal component analysis showed that PsJN-induced plant responses to the pathogen could be differentiated from those induced by the pathogen itself. Forty-eight transcription factors were regulated by PsJN at 1 hpi, and a system biology analysis revealed a network with four clusters. Within these clusters LHY, WRKY28, MYB31 and RRTF1 are highly connected transcription factors, which could act as hub regulators in this interaction. Concordantly with our previous results, these clusters are related to jasmonate, ethylene, salicylic, acid and ROS pathways. These results indicate that a rapid and specific response of PsJN-inoculated plants to the virulent DC3000 strain could be the pivotal element in the protection mechanism.


Assuntos
Arabidopsis/genética , Burkholderiaceae/fisiologia , Regulação da Expressão Gênica de Plantas/imunologia , Doenças das Plantas/genética , Pseudomonas syringae/patogenicidade , Fatores de Transcrição/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ciclopentanos/imunologia , Ciclopentanos/metabolismo , Resistência à Doença/genética , Etilenos/imunologia , Etilenos/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/imunologia , Oxilipinas/imunologia , Oxilipinas/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal/genética , Análise de Componente Principal , Pseudomonas syringae/crescimento & desenvolvimento , Ácido Salicílico/imunologia , Ácido Salicílico/metabolismo , Fatores de Transcrição/imunologia , Transcriptoma/imunologia
3.
Mol Plant Microbe Interact ; 30(3): 215-230, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28118091

RESUMO

Paraburkholderia phytofirmans PsJN is a plant growth-promoting rhizobacterium (PGPR) that stimulates plant growth and improves tolerance to abiotic stresses. This study analyzed whether strain PsJN can reduce plant disease severity and proliferation of the virulent strain Pseudomonas syringae pv. tomato DC3000, in Arabidopsis plants, through the activation of induced resistance. Arabidopsis plants previously exposed to strain PsJN showed a reduction in disease severity and pathogen proliferation in leaves compared with noninoculated, infected plants. The plant defense-related genes WRKY54, PR1, ERF1, and PDF1.2 demonstrated increased and more rapid expression in strain PsJN-treated plants compared with noninoculated, infected plants. Transcriptional analyses and functional analysis using signaling mutant plants suggested that resistance to infection by DC3000 in plants treated with strain PsJN involves salicylic acid-, jasmonate-, and ethylene-signaling pathways to activate defense genes. Additionally, activation occurs through a specific PGPR-host recognition, being a necessary metabolically active state of the bacterium to trigger the resistance in Arabidopsis, with a strain PsJN-associated molecular pattern only partially involved in the resistance response. This study provides the first report on the mechanism used by the PGPR P. phytofirmans PsJN to protect A. thaliana against a widespread virulent pathogenic bacterium.


Assuntos
Arabidopsis/microbiologia , Burkholderia/fisiologia , Resistência à Doença , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Arabidopsis/genética , Arabidopsis/imunologia , Biofilmes , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Patógeno , Mutação/genética , Oxilipinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Transcrição Gênica , Virulência/genética
4.
Biochem Biophys Res Commun ; 483(1): 664-668, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-27993678

RESUMO

Chemical inhibition of chromatin regulators provides an effective approach to investigate the roles of chromatin modifications in plant and animals. In this work, chemical inhibition of the Arabidopsis histone acetyltransferase activity by γ-butyrolactone (MB-3), the inhibitor of the catalytic activity of mammalian GENERAL CONTROL NON-REPRESSIBLE 5 (GCN5) is evaluated. Arabidopsis seedlings were germinated in LS medium supplemented with different concentrations of MB-3, and inhibition in the root length and yellowed leaves were observed. The yellowed leaves phenotype of the plants grown in 100 µM of MB-3 was reverted when plants were additionally treated with 1 µM of TSA, a histone deacetylase inhibitor. Using an immunoblot assay with specific antibodies revealed a reduction of H3K14 acetylation levels at 3 and 24 h post-treatment. At 24 h post-treatment a reduction of H3K9 acetylation levels was observed. Targets of GCN5 related to stress were downregulated at 3 h post-treatment but no change was observed in target genes related to developmental transition. Our results indicate that MB-3 is a chemical inhibitor of the histone acetyltransferase in Arabidopsis and suggest that this inhibitor could function in other plants species.


Assuntos
4-Butirolactona/farmacologia , Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/enzimologia , Inibidores Enzimáticos/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Acetilação/efeitos dos fármacos , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Domínio Catalítico , Regulação para Baixo , Germinação/efeitos dos fármacos , Histona Acetiltransferases/química , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia
5.
Appl Environ Microbiol ; 83(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795307

RESUMO

Several bacteria use the plant hormone indole-3-acetic acid (IAA) as a sole carbon and energy source. A cluster of genes (named iac) encoding IAA degradation has been reported in Pseudomonas putida 1290, but the functions of these genes are not completely understood. The plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN harbors iac gene homologues in its genome, but with a different gene organization and context than those of P. putida 1290. The iac gene functions enable P. phytofirmans to use IAA as a sole carbon and energy source. Employing a heterologous expression system approach, P. phytofirmans iac genes with previously undescribed functions were associated with specific biochemical steps. In addition, two uncharacterized genes, previously unreported in P. putida and found to be related to major facilitator and tautomerase superfamilies, are involved in removal of an IAA metabolite called dioxindole-3-acetate. Similar to the case in strain 1290, IAA degradation proceeds through catechol as intermediate, which is subsequently degraded by ortho-ring cleavage. A putative two-component regulatory system and a LysR-type regulator, which apparently respond to IAA and dioxindole-3-acetate, respectively, are involved in iac gene regulation in P. phytofirmans These results provide new insights about unknown gene functions and complex regulatory mechanisms in IAA bacterial catabolism. IMPORTANCE: This study describes indole-3-acetic acid (auxin phytohormone) degradation in the well-known betaproteobacterium P. phytofirmans PsJN and comprises a complete description of genes, some of them with previously unreported functions, and the general basis of their gene regulation. This work contributes to the understanding of how beneficial bacteria interact with plants, helping them to grow and/or to resist environmental stresses, through a complex set of molecular signals, in this case through degradation of a highly relevant plant hormone.


Assuntos
Proteínas de Bactérias/genética , Burkholderiaceae/genética , Burkholderiaceae/metabolismo , Regulação Bacteriana da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Bactérias/metabolismo , Burkholderiaceae/fisiologia , Genes Bacterianos , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/química , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Estresse Fisiológico/genética
6.
Front Microbiol ; 7: 1838, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27909432

RESUMO

Abiotic stress has a growing impact on plant growth and agricultural activity worldwide. Specific plant growth promoting rhizobacteria have been reported to stimulate growth and tolerance to abiotic stress in plants, and molecular mechanisms like phytohormone synthesis and 1-aminocyclopropane-1-carboxylate deamination are usual candidates proposed to mediate these bacterial effects. Paraburkholderia phytofirmans PsJN is able to promote growth of several plant hosts, and improve their tolerance to chilling, drought and salinity. This work investigated bacterial determinants involved in PsJN stimulation of growth and salinity tolerance in Arabidopsis thaliana, showing bacteria enable plants to survive long-term salinity treatment, accumulating less sodium within leaf tissues relative to non-inoculated controls. Inactivation of specific bacterial genes encoding ACC deaminase, auxin catabolism, N-acyl-homoserine-lactone production, and flagellin synthesis showed these functions have little influence on bacterial induction of salinity tolerance. Volatile organic compound emission from strain PsJN was shown to reproduce the effects of direct bacterial inoculation of roots, increasing plant growth rate and tolerance to salinity evaluated both in vitro and in soil. Furthermore, early exposure to VOCs from P. phytofirmans was sufficient to stimulate long-term effects observed in Arabidopsis growth in the presence and absence of salinity. Organic compounds were analyzed in the headspace of PsJN cultures, showing production of 2-undecanone, 7-hexanol, 3-methylbutanol and dimethyl disulfide. Exposure of A. thaliana to different quantities of these molecules showed that they are able to influence growth in a wide range of added amounts. Exposure to a blend of the first three compounds was found to mimic the effects of PsJN on both general growth promotion and salinity tolerance. To our knowledge, this is the first report on volatile compound-mediated induction of plant abiotic stress tolerance by a Paraburkholderia species.

7.
J Exp Biol ; 217(Pt 24): 4379-86, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25394627

RESUMO

Environmental temperature has profound effects on the biological performance and biogeographical distribution of ectothermic species. Variation of this abiotic factor across geographic gradients is expected to produce physiological differentiation and local adaptation of natural populations depending on their thermal tolerances and physiological sensitivities. Here, we studied geographic variation in whole-organism thermal physiology of seven populations of the porcelain crab Petrolisthes violaceus across a latitudinal gradient of 3000 km, characterized by a cline of thermal conditions. Our study found that populations of P. violaceus show no differences in the limits of their thermal performance curves and demonstrate a negative correlation of their optimal temperatures with latitude. Additionally, our findings show that high-latitude populations of P. violaceus exhibit broader thermal tolerances, which is consistent with the climatic variability hypothesis. Interestingly, under a future scenario of warming oceans, the thermal safety margins of P. violaceus indicate that lower latitude populations can physiologically tolerate the ocean-warming scenarios projected by the IPCC for the end of the twenty-first century.


Assuntos
Aclimatação , Adaptação Fisiológica , Anomuros/fisiologia , Temperatura , Animais , Geografia , Oceano Pacífico
8.
Biol Res ; 47: 64, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25723815

RESUMO

BACKGROUND: Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRN) that enable cells to process information and respond to external stimuli. Several important processes for life, depend of an accurate and context-specific regulation of gene expression, such as the cell cycle, which can be analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space. In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast) cell cycle network through an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same state sequences of the fission yeast cell cycle. RESULTS: Through simulations it was found that in the generated neutral graph, the functional networks that are not in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more than 10 between the other disconnected functional networks. Significant differences were found between the functional networks in the connected component of the wildtype network and the rest of the network, not only at a topological level, but also at the state space level, where significant differences in the distribution of the basin of attraction for the G1 fixed point was found for deterministic updating schemes. CONCLUSIONS: In general, functional networks in the wildtype network connected component, can mutate up to no more than 3 times, then they reach a point of no return where the networks leave the connected component of the wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space of other biologically interesting networks, and also formulate new biological hypotheses studying the functional networks in the wildtype network connected component.


Assuntos
Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Redes Reguladoras de Genes/fisiologia , Modelos Biológicos , Schizosaccharomyces/fisiologia , Proteínas de Ciclo Celular/metabolismo , Biologia Computacional , Gráficos por Computador , Simulação por Computador , Fase G1/fisiologia , Redes Neurais de Computação , Schizosaccharomyces/genética
9.
Biol. Res ; 47: 1-12, 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-950760

RESUMO

BACKGROUND: Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRN) that enable cells to process information and respond to external stimuli. Several important processes for life, depend of an accurate and context-specific regulation of gene expression, such as the cell cycle, which can be analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space. In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast) cell cycle network through an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same state sequences of the fission yeast cell cycle. RESULTS: Through simulations it was found that in the generated neutral graph, the functional networks that are not in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more than 10 between the other disconnected functional networks. Significant differences were found between the functional networks in the connected component of the wildtype network and the rest of the network, not only at a topological level, but also at the state space level, where significant differences in the distribution of the basin of attraction for the G1 fixed point was found for deterministic updating schemes. CONCLUSIONS: In general, functional networks in the wildtype network connected component, can mutate up to no more than 3 times, then they reach a point of no return where the networks leave the connected component of the wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space of other biologically interesting networks, and also formulate new biological hypotheses studying the functional networks in the wildtype network connected component.


Assuntos
Schizosaccharomyces/fisiologia , Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Redes Reguladoras de Genes/fisiologia , Modelos Biológicos , Schizosaccharomyces/genética , Gráficos por Computador , Simulação por Computador , Fase G1/fisiologia , Redes Neurais de Computação , Proteínas de Ciclo Celular/metabolismo , Biologia Computacional
10.
PLoS One ; 8(7): e69435, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23869243

RESUMO

Plant growth-promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short-term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Here, we studied the effects of the PGPR bacterial model Burkholderiaphytofirmans PsJN on the whole life cycle of Arabidopsis thaliana plants. We reported that at different plant developmental points, strain PsJN can be found in the rhizosphere and also colonizing their internal tissues. In early ontogeny, strain PsJN increased several growth parameters and accelerated growth rate of the plants. Also, an Arabidopsis transcriptome analysis revealed that 408 genes showed differential expression in PsJN-inoculated plants; some of these genes are involved in stress response and hormone pathways. Specifically, genes implicated in auxin and gibberellin pathways were induced. Quantitative transcriptional analyses of selected genes in different developmental stages revealed that the beginning of these changes could be evidenced early in development, especially among the down-regulated genes. The inoculation with heat-killed bacteria provoked a more severe transcriptional response in plants, but was not able to induce plant growth-promotion. Later in ontogeny, the growth rates of inoculated plants decreased with respect to the non-inoculated group and, interestingly, the inoculation accelerated the flowering time and the appearance of senescence signs in plants; these modifications correlate with the early up-regulation of flowering control genes. Then, we show that a single inoculation with a PGPR could affect the whole life cycle of a plant, accelerating its growth rate and shortening its vegetative period, both effects relevant for most crops. Thus, these findings provide novel and interesting aspects of these relevant biological interactions.


Assuntos
Arabidopsis/microbiologia , Burkholderia/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Flores/microbiologia , Regulação da Expressão Gênica de Plantas , Germinação , Desenvolvimento Vegetal/genética , Rizosfera , Sementes/crescimento & desenvolvimento , Sementes/microbiologia
11.
Mol Biol Rep ; 40(4): 3281-90, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23283739

RESUMO

The glyoxalase system plays an important role in various physiological processes in plants, including salt stress tolerance. We report the effects of overexpressing glyoxalase I and glyoxalase II genes in transgenic tomato (Solanum lycopersicum Mill.) cv. Ailsa Craig. Stable expression of both transgenes was detected in the transformed tomato plants under salt stress. The transgenic lines overexpressing GlyI and GlyII under a high NaCl concentration (800 mM) showed reduced lipid peroxidation and the production of H2O2 in leaf tissues. A greater decrease in the chlorophyll a+b content in wild-type (WT) compared with transgenic lines was also observed. These results suggest that the over expression of two genes, GlyI and GlyII, may enhance salt stress tolerance by decreasing oxidative stress in transformed tomato plants. This work will help our understanding of the putative role of the glyoxalase system in the tolerance to abiotic stress in tomato plants.


Assuntos
Lactoilglutationa Liase/metabolismo , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Tolerância ao Sal/genética , Tioléster Hidrolases/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lactoilglutationa Liase/genética , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Estresse Oxidativo , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Tioléster Hidrolases/genética
12.
Plant Cell Rep ; 30(6): 1087-97, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21293861

RESUMO

The SET DOMAIN GROUP (SDG) proteins represent an evolutionarily-conserved family of epigenetic regulators present in eukaryotes and are putative candidates for the catalysis of lysine methylation in histones. Plant genomes analyses of this family have been performed in arabidopsis, maize, and rice and functional studies have shown that SDG genes are involved in the control of plant development. In this work, we describe the identification and structural characterization of SDG genes in the Vitis vinifera genome. This analysis revealed the presence of 33 putative SDG genes that can be grouped into different classes, as it has been previously described for plants. In addition to the SET domain, the proteins identified possessed other domains in the different classes. As part of our study regarding the growth and development of grapevine, we selected eight genes and their expression levels were analyzed in representative vegetative and reproductive organs of this species. The selected genes showed different patterns of expression during inflorescence and fruit development, suggesting that they participate in these processes. Furthermore, we showed that the expression of selected SDGs changes during viral infection, using as a model Grapevine Leafroll Associated Virus 3-infected symptomatic grapevine leaves and fruits. Our results suggest that developmental changes caused by this virus could be the result of alterations in SDG expression.


Assuntos
Genoma de Planta/genética , Família Multigênica/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Vitis/genética , Arabidopsis/genética , Cromossomos de Plantas/genética , Análise por Conglomerados , Sequência Conservada/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Anotação de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Vitis/crescimento & desenvolvimento , Vitis/virologia
13.
Plant Physiol Biochem ; 48(2-3): 194-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20097570

RESUMO

Histone acetyltransferases (HATs) and deacetylases (HDACs) play critical roles in the regulation of chromatin structure and gene expression. In plants, these genes are emerging as crucial players in all aspects of development. As part of our study regarding the growth and development of grapevine (Vitis vinifera), we report the genome-wide analysis of HAT and HDAC genes. This analysis revealed the presence of 7 and 13 genes coding for putative HATs and HDACs, respectively. In this work, we present a complete analysis of these families with regards to their phylogenetic relationships with orthologous genes identified in other sequenced plant genomes, their genome location, gene structure and expression. The genes identified can be grouped into different families as has been previously described for other eukaryotic species. The organ-specific expression pattern of HAT and HDAC genes indicates that some genes have different expression profiles, and their potential involvement during grape development is discussed.


Assuntos
Perfilação da Expressão Gênica , Expressão Gênica , Genes de Plantas , Histona Acetiltransferases/genética , Histona Desacetilases/genética , Estruturas Vegetais/metabolismo , Vitis/enzimologia , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Família Multigênica , Filogenia , RNA Mensageiro/metabolismo , Homologia de Sequência , Vitis/genética , Vitis/crescimento & desenvolvimento
14.
Gene ; 404(1-2): 10-24, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17920788

RESUMO

The B class of MADS-box floral homeotic genes specifies petal and stamen identity in angiosperms. While this group is one of the most studied in herbaceous plant species, it has remained largely uncharacterized in woody species such as grapevine. Although the B class PI/GLO and AP3/DEF clades have been extensively characterized in model species, the role of the TM6 subgroup within the AP3 clade is not completely understood, since it is absent in Arabidopsis thaliana. In this study, the coding regions of VvTM6 and VvAP3 and the genomic sequence of VvPI, were cloned. VvPI and AtPI were confirmed to be functional homologues by means of complementation of the pi Arabidopsis mutant. Expression analysis revealed that VvPI and VvAP3 transcripts are restricted almost exclusively to inflorescences, although VvPI was detected at low levels in leaves and roots. VvTM6 expresses throughout the plant, with higher levels in flowers and berries. A detailed chronological study of grape flower progression by light microscopy and temporal expression analysis throughout early and late developmental stages, revealed that VvPI expression increases during pollen maturation and decreases between the events of pollination and fertilization, before the cap fall. On the other hand, VvTM6 is expressed in the last stage of anther development. Specific expression of VvAP3 and VvPI was detected in petals and stamens within the flower, while VvTM6 was also expressed in carpels. Moreover, this work provides the first evidence for expression of a TM6-like gene throughout fruit growth and ripening. Even if these genes belong to the same genetic class they could act in different periods and/or tissues during reproductive organ development.


Assuntos
Flores/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Vitis/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Clonagem Molecular , Flores/anatomia & histologia , Frutas/anatomia & histologia , Expressão Gênica , Genes de Plantas/fisiologia , Proteínas de Domínio MADS/classificação , Dados de Sequência Molecular , Filogenia , Vitis/anatomia & histologia , Vitis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA