Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nanomaterials (Basel) ; 12(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364525

RESUMO

An original method was proposed to reduce the quenching of the NIR fluorescence of colloidal solutions of 0.1 at. % Nd3+: LaF3 nanoparticles (NPs) synthesized by aqueous co-precipitation method followed by hydrothermal microwave treatment. For this, an aqueous colloidal solution of NPs was precipitated by centrifugation and dissolved in the same volume of DMSO. The kinetics of static fluorescence quenching of Nd3+ donors of doped NPs dispersed in two solvents was analyzed to determine and to compare the concentrations of OH- quenching acceptors uniformly distributed throughout the volume of the NPs. The dependences of the relative fluorescence quantum yield φ of colloidal solutions on the concentration of OH- groups in the NPs were calculated and were also used to determine concentration of acceptors in the volume of NPs in different solvents. It was found that the concentration of OH- groups in NPs dispersed in DMSO is almost two times lower than in NPs dispersed in water. This gives an almost two-fold increase in the relative fluorescence quantum yield φ for the former. The sizes of synthesized NPs were monitored by common TEM and by applying a rapid procedure based on optical visualization of the trajectories of the Brownian motion of NPs in solution using a laser ultramicroscope. The use of two different methods made it possible to obtain more detailed information about the studied NPs.

2.
Front Neurosci ; 15: 777572, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912190

RESUMO

Compulsive eating is the most obstinate feature of binge eating disorder. In this study, we observed the compulsive eating in our stress-induced binge-like eating rat model using a conflicting test, where sucrose and an aversively conditioned stimulus were presented at the same time. In this conflicting situation, the binge-like eating prone rats (BEPs), compared to the binge-like eating resistant rats (BERs), showed persistent high sucrose intake and inhibited fear response, respectively, indicating a deficit in palatability devaluation and stronger anxiolytic response to sucrose in the BEPs. We further analyzed the neuronal activation with c-fos mRNA in situ hybridization. Surprisingly, the sucrose access under conditioned fear did not inhibit the activity of amygdala; instead, it activated the central amygdala. In the BEPs, sucrose reduced the response of the paraventricular hypothalamic nucleus (PVN), while enhancing activities in the lateral hypothalamic area (LHA) to the CS. The resistance to devaluating the palatable food in the BEPs could be a result of persistent Acb response to sucrose intake and attenuated recruitment of the medial prefrontal cortex (mPFC). We interpret this finding as that the reward system of the BEPs overcame the homeostasis system and the stress-responding system.

3.
Nanomaterials (Basel) ; 11(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34835612

RESUMO

Two series of stable aqueous colloidal solutions of Nd3+: LaF3 single-phase well-crystallized nanoparticles (NPs), possessing a fluorcerite structure with different activator concentrations in each series, were synthesized. A hydrothermal method involving microwave-assisted heating (HTMW) in two Berghof speedwave devices equipped with one magnetron (type I) or two magnetrons (type II) was used. The average sizes of NPs are 15.4 ± 6 nm (type I) and 21 ± 7 nm (type II). Both types of NPs have a size distribution that is well described by a double Gaussian function. The fluorescence kinetics of the 4F3/2 level of the Nd3+ ion for NPs of both types, in contrast to a similar bulk crystal, demonstrates a luminescence quenching associated not only with Nd-Nd self-quenching, but also with an additional Nd-OH quenching. A method has been developed for determining the spontaneous radiative lifetime of the excited state of a dopant ion, with the significant contribution of the luminescence quenching caused by the presence of the impurity OH- acceptors located in the bulk of NPs. The relative quantum yield of fluorescence and the fluorescence brightness of an aqueous colloidal solution of type II NPs with an optimal concentration of Nd3+ are only 2.5 times lower than those of analogous Nd3+: LaF3 single crystals.

4.
Physiol Behav ; 242: 113604, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563545

RESUMO

Binge eating disorder (BED), characterized by bingeing episodes and compulsivity, is the most prevalent eating disorder; however, little is known about its neurobiological underpinnings. In humans, BED is associated with desensitization of the reward system, specifically, the medial prefrontal cortex (mPFC), nucleus accumbens (Acb), and ventral tegmental area (VTA). Additionally, BED patients feel relieved during bingeing, suggesting that bingeing helps to decrease the negative emotions they were feeling prior to the binge episode. However, the mechanisms that underlie this feeling of relief in BED patients have not been well investigated. To investigate neuronal activity before and during palatable food consumption in BED, we performed in vivo electrophysiological recordings in a binge-like eating rat model (bingeing, n = 12 and non-bingeing, n = 14) and analyzed the firing rate of neurons in the mPFC, Acb, and VTA before and during access to sucrose solution. We also investigated changes in the firing rate of neurons in these regions during and between active bingeing, which may underlie the feeling of relief in BED patients. We found that neuronal firing rates of mPFC and VTA neurons in bingeing rats were lower than those in non-bingeing rats before and during sucrose consumption. Palatable food consumption increased neuronal firing rates during and between active bingeing in bingeing rats. Our results suggest a desynchronization in the activity of reward system regions, specifically in the mPFC, in bingeing rats, which may also contribute to BED. These results are consistent with those of functional magnetic resonance imaging (fMRI) studies that reported decreased activity in the reward system in BED patients. We propose that increased neuronal activity in the mPFC, Acb, or VTA produces an antidepressant effect in rats, which may underlie the sense of relief patients express during bingeing episodes.


Assuntos
Transtorno da Compulsão Alimentar , Animais , Ingestão de Alimentos , Feminino , Humanos , Neurônios , Núcleo Accumbens , Ratos , Recompensa , Área Tegmentar Ventral
5.
Neuroendocrinology ; 111(12): 1201-1218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33333517

RESUMO

INTRODUCTION: Food intake varies during the ovarian hormone/estrous cycle in humans and rodents, an effect mediated mainly by estradiol. A potential mediator of the central anorectic effects of estradiol is the neuropeptide relaxin-3 (RLN3) synthetized in the nucleus incertus (NI) and acting via the relaxin family peptide-3 receptor (RXFP3). METHODS: We investigated the relationship between RLN3/RXFP3 signaling and feeding behavior across the female rat estrous cycle. We used in situ hybridization to investigate expression patterns of Rln3 mRNA in NI and Rxfp3 mRNA in the hypothalamic paraventricular nucleus (PVN), lateral hypothalamic area (LHA), medial preoptic area (MPA), and bed nucleus of the stria terminalis (BNST), across the estrous cycle. We identified expression of estrogen receptors (ERs) in the NI using droplet digital PCR and assessed the electrophysiological responsiveness of NI neurons to estradiol in brain slices. RESULTS: Rln3 mRNA reached the lowest levels in the NI pars compacta during proestrus. Rxfp3 mRNA levels varied across the estrous cycle in a region-specific manner, with changes observed in the perifornical LHA, magnocellular PVN, dorsal BNST, and MPA, but not in the parvocellular PVN or lateral LHA. G protein-coupled estrogen receptor 1 (Gper1) mRNA was the most abundant ER transcript in the NI. Estradiol inhibited 33% of type 1 NI neurons, including RLN3-positive cells. CONCLUSION: These findings demonstrate that the RLN3/RXFP3 system is modulated by the estrous cycle, and although further studies are required to better elucidate the cellular and molecular mechanisms of estradiol signaling, current results implicate the involvement of the RLN3/RXFP3 system in food intake fluctuations observed across the estrous cycle in female rats.


Assuntos
Estradiol/metabolismo , Ciclo Estral/metabolismo , Região Hipotalâmica Lateral/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina/metabolismo , Núcleos Septais/metabolismo , Animais , Feminino , RNA Mensageiro/metabolismo , Ratos
6.
Front Syst Neurosci ; 14: 562154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33177996

RESUMO

Binge eating (BE) is characterized by the consumption of large amounts of palatable food in a discrete period and compulsivity. Even though BE is a common symptom in bulimia nervosa (BN), binge eating disorder (BED), and some cases of other specified feeding or eating disorders, little is known about its pathophysiology. We aimed to identify brain regions and neuron subtypes implicated in the development of binge-like eating in a female rat model. We separated rats into binge eating prone (BEP) and binge eating resistant (BER) phenotypes based on the amount of sucrose they consumed following foot-shock stress. We quantified deltaFosB (ΔFosB) expression, a stably expressed Fos family member, in different brain regions involved in reward, taste, or stress processing, to assess their involvement in the development of the phenotype. The number of ΔFosB-expressing neurons was: (1) higher in BEP than BER rats in reward processing areas [medial prefrontal cortex (mPFC), nucleus accumbens (Acb), and ventral tegmental area (VTA)]; (2) similar in taste processing areas [insular cortex, IC and parabrachial nucleus (PBN)]; and (3) higher in the paraventricular nucleus of BEP than BER rats, but not different in the locus coeruleus (LC), which are stress processing structures. To study subtypes of ΔFosB-expressing neurons in the reward system, we performed in situ hybridization for glutamate decarboxylase 65 and tyrosine hydroxylase (TH) mRNA after ΔFosB immunohistochemistry. In the mPFC and Acb, the proportions of γ-aminobutyric acidergic (GABAergic) and non-GABAergic ΔFosB-expressing neurons were similar in BER and BEP rats. In the VTA, while the proportion of dopaminergic ΔFosB-expressing neurons was similar in both phenotypes, the proportion of GABAergic ΔFosB-expressing neurons was higher in BER than BEP rats. Our results suggest that reward processing brain regions, particularly the VTA, are important for the development of binge-like eating.

7.
Brain Struct Funct ; 225(9): 2815-2839, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33124673

RESUMO

In rodents, stimulation of the nucleus accumbens shell (AcbSh) directly or via its projection to the lateral hypothalamus (LH) attenuates food intake. The ventral pallidum (VP) receives dense projections from the AcbSh and is sensitive to the hedonic aspect of food and motivation for reward. However, the role of accumbal projections to the VP in the regulation of food intake was not well investigated. In the present study conducted on female rats, we examined the effects of stimulation of the AcbSh using optogenetics, or pharmacological inhibition of the rostral VP, or stimulation of projections from the AcbSh to the rostral VP using optogenetics on the consumption of 10% sucrose, lick microstructure and the expression of c-fos mRNA. Stimulation of the AcbSh, inhibition of the rostral VP with muscimol, or stimulation of axonal terminals from the AcbSh to the rostral VP resulted in a decrease in sucrose intake, meal duration, and total number of licks. The licking microstructure analysis showed that optogenetic stimulation of AcbSh or axonal terminals from the AcbSh to the rostral VP decreased the hedonic value of the sucrose. However, inhibition of the rostral VP decreased the motivation, whereas stimulation of the accumbal projections in the rostral VP increased the motivation to drink. This difference could be due to differential involvement of GABAergic and glutamatergic VP neurons. Stimulation of the AcbSh resulted in a decrease of c-fos mRNA expression in the LH and rostral VP, and stimulation of axonal terminals from the AcbSh to the rostral VP decreased c-fos mRNA expression only in the rostral VP. This study demonstrates that in adult female rats, in addition to the already known role of the AcbSh projections to the LH, AcbSh projections to the VP play a major role in the regulation of sucrose intake.


Assuntos
Prosencéfalo Basal/fisiologia , Comportamento de Ingestão de Líquido , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Animais , Feminino , Vias Neurais/fisiologia , Optogenética , Ratos Sprague-Dawley , Sacarose/administração & dosagem
8.
Psychopharmacology (Berl) ; 237(4): 1091-1106, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31897576

RESUMO

Eating disorders are frequently triggered by stress and are more prevalent in women than men. First signs often appear during early adolescence, but the biological basis for the sex-specific differences is unknown. Central administration of native relaxin-3 (RLN3) peptide or chimeric/truncated analogues produces differential effects on food intake and HPA axis activity in adult male and female rats, but the precise role of endogenous RLN3 signalling in metabolic and neuroendocrine control is unclear. Therefore, we examined the effects of microRNA-induced depletion (knock-down) of RLN3 mRNA/(peptide) production in neurons of the brainstem nucleus incertus (NI) in female rats on a range of physiological, behavioural and neurochemical indices, including food intake, body weight, anxiety, plasma corticosterone, mRNA levels of key neuropeptides in the paraventricular nucleus of hypothalamus (PVN) and limbic neural activity patterns (reflected by c-fos mRNA). Validated depletion of RLN3 in NI neurons of female rats (n = 8) produced a small, sustained (~ 2%) decrease in body weight, an imbalance in food intake and an increase in anxiety-like behaviour in the large open field, but not in the elevated plus-maze or light/dark box. Furthermore, NI RLN3 depletion disrupted corticosterone regulation, increased oxytocin and arginine-vasopressin, but not corticotropin-releasing factor, mRNA, in PVN, and decreased basal levels of c-fos mRNA in parvocellular and magnocellular PVN, bed nucleus of stria terminalis and the lateral hypothalamic area, brain regions involved in stress and feeding. These findings support a role for NI RLN3 neurons in fine-tuning stress and neuroendocrine responses and food intake regulation in female rats.


Assuntos
Ansiedade/metabolismo , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Sistema Límbico/metabolismo , Proteínas do Tecido Nervoso/deficiência , Núcleos da Rafe/metabolismo , Relaxina/deficiência , Animais , Ansiedade/psicologia , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/psicologia , Feminino , Técnicas de Silenciamento de Genes/métodos , Sistema Límbico/efeitos dos fármacos , MicroRNAs/administração & dosagem , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Relaxina/antagonistas & inibidores , Relaxina/genética
9.
World Allergy Organ J ; 11(1): 35, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524646

RESUMO

BACKGROUND: In addition to allergen-specific IgE (sIgE), allergen-specific IgG4 (sIgG4) antibodies are also involved in the immune response resulting from an allergen exposure. The aim of our study was to analyze sIgE and sIgG4 patterns in the most common allergic disorders: bronchial asthma, upper airway disorders and atopic dermatitis. METHODS: In this study a screening analysis of blood serum samples from 673 patients aged from 6 months to 17 years with different allergic entities was performed on microarrays. sIgE and sIgG4 levels to the most common allergens were estimated. RESULTS: sIgE response to most pollen allergens is more strongly associated with respiratory diseases than with atopic dermatitis, while sIgE responses to cat and dog dander are more strongly associated with bronchial asthma than with atopic dermatitis and upper airway disorders such as rhinosinusitis and allergic rhinitis. A lower prevalence of sIgG4 to pollen allergens in cases of atopic dermatitis is observed compared with that in cases of asthma and upper airway disorders. Analyzing all the allergic disorders, one can see that sIgG4 response to inhalant allergens is strongly associated with sensitization to the corresponding allergen. CONCLUSION: Allergen-specific IgE and IgG4 patterns that are relevant to concrete allergic diseases differ by sIgE and sIgG4 prevalences to defined allergens.

10.
Vaccine ; 36(52): 7936-7942, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30448334

RESUMO

BACKGROUND: In Russia as in other countries introduction of infant vaccination against pertussis in 1950s led to dramatic decrease of whooping cough. The current vaccination schedule includes a 3-dose infant series and toddler booster; the pre-school booster was cancelled in 1980s and never reintroduced. Whole-cell vaccines, and in a smaller proportion acellular vaccines are used for all doses. However, pertussis incidence in urban settings is high with highest burden in school children. We conducted a study of seroprevalence of recent pertussis infection to estimate the duration of protection from the 4-dose series. MATERIALS AND METHODS: Sera sample from 395 St Petersburg children aged ≥3 years and <14 years were tested for pertussis toxin antibodies using a commercial PT ELISA test. Only children with completed 4-dose vaccination course were included in the study. Age-specific seroprevalence of recent pertussis infection was analyzed for trends. RESULTS: Children fully vaccinated against pertussis at 3 years old had significant delays in infant vaccination schedule: only 83.5% received at least one dose of pertussis vaccine at 6 months of age and 25.6% received their toddler booster before 24 months-old. Overall, 10.6% of children demonstrated the serological signs of the infection in the last 12 months. A clear trend (r2 = 0.692) of increasing proportion of infection in the last 12 months was observed in children who had received their last dose of vaccine 6 years and more prior to the study. CONCLUSION: Our study demonstrates that Russian children become susceptible to infection at or soon after entering school. The results confirm the waning of vaccine-elicited immunity around school-age and support the need for a booster dose at that age.


Assuntos
Vacina contra Coqueluche/uso terapêutico , Coqueluche/epidemiologia , Coqueluche/prevenção & controle , Adolescente , Anticorpos Antibacterianos/sangue , Bordetella pertussis , Criança , Pré-Escolar , Estudos Transversais , Suscetibilidade a Doenças , Feminino , Humanos , Esquemas de Imunização , Imunização Secundária , Imunoglobulina G/sangue , Masculino , Vacina contra Coqueluche/administração & dosagem , Federação Russa/epidemiologia , Estudos Soroepidemiológicos , Vacinação/estatística & dados numéricos , Vacinas Acelulares/administração & dosagem , Vacinas Acelulares/uso terapêutico
11.
Behav Brain Res ; 336: 135-144, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28864207

RESUMO

The neuropeptide relaxin-3 (RLN3) binds with high affinity to its cognate receptor, relaxin-family peptide receptor 3 (RXFP3), and with lower affinity to RXFP1, the cognate receptor for relaxin. Intracerebroventricular (icv) administration of RLN3 in rats strongly increases food and water intake and alters the activity of the hypothalamic-pituitary-adrenal (HPA) and gonadal (HPG) axes, but the relative involvement of RXFP3 and RXFP1 in these effects is not known. Therefore, the effects of icv administration of equimolar (1.1 nmol) amounts of RLN3 and the RXFP3-selective agonist RXFP3-A2 on food and water intake, plasma levels of corticosterone, testosterone, and oxytocin and c-fos mRNA expression in key hypothalamic regions in male rats were compared. Food intake was increased by both RLN3 and RXFP3-A2, but the orexigenic effects of RXFP3-A2 were significantly stronger than RLN3, 30 and 60min after injection. Water intake and plasma corticosterone and testosterone levels were significantly increased by RLN3, but not by RXFP3-A2. Conversely, RXFP3-A2 but not RLN3 decreased oxytocin plasma levels. RLN3, but not RXFP3-A2, increased c-fos mRNA levels in the parvocellular (PVNp) and magnocellular (PVNm) paraventricular and supraoptic (SON) hypothalamic nuclei, in the ventral medial preoptic area (MPAv), and in the organum vasculosum of the lamina terminalis (OVLT). A significant increase in c-fos mRNA expression was induced in the perifornical lateral hypothalamic area (LHApf) by RLN3 and RXFP3-A2. These results suggest that RXFP1 is involved in the RLN3 stimulation of water intake and activation of the HPA and HPG axes. The reduced food intake stimulation by RLN3 compared to RXFP3-A2 may relate to activation of both orexigenic and anorexigenic circuits by RLN3.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Relaxina/metabolismo , Animais , Corticosterona/sangue , Ingestão de Líquidos/efeitos dos fármacos , Alimentos , Sistema Hipotálamo-Hipofisário , Hipotálamo , Masculino , Proteínas do Tecido Nervoso/farmacologia , Neurônios/metabolismo , Ocitocina/sangue , Sistema Hipófise-Suprarrenal , Proteínas Proto-Oncogênicas c-fos/sangue , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina/farmacologia , Testosterona/sangue
12.
J Physiol ; 595(11): 3425-3447, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28098344

RESUMO

KEY POINTS: Relaxin-3 is a stress-responsive neuropeptide that acts at its cognate receptor, RXFP3, to alter behaviours including feeding. In this study, we have demonstrated a direct, RXFP3-dependent, inhibitory action of relaxin-3 on oxytocin and vasopressin paraventricular nucleus (PVN) neuron electrical activity, a putative cellular mechanism of orexigenic actions of relaxin-3. We observed a Gαi/o -protein-dependent inhibitory influence of selective RXFP3 activation on PVN neuronal activity in vitro and demonstrated a direct action of RXFP3 activation on oxytocin and vasopressin PVN neurons, confirmed by their abundant expression of RXFP3 mRNA. Moreover, we demonstrated that RXFP3 activation induces a cadmium-sensitive outward current, which indicates the involvement of a characteristic magnocellular neuron outward potassium current. Furthermore, we identified an abundance of relaxin-3-immunoreactive axons/fibres originating from the nucleus incertus in close proximity to the PVN, but associated with sparse relaxin-3-containing fibres/terminals within the PVN. ABSTRACT: The paraventricular nucleus of the hypothalamus (PVN) plays an essential role in the control of food intake and energy expenditure by integrating multiple neural and humoral inputs. Recent studies have demonstrated that intracerebroventricular and intra-PVN injections of the neuropeptide relaxin-3 or selective relaxin-3 receptor (RXFP3) agonists produce robust feeding in satiated rats, but the cellular and molecular mechanisms of action associated with these orexigenic effects have not been identified. In the present studies, using rat brain slices, we demonstrated that relaxin-3, acting through its cognate G-protein-coupled receptor, RXFP3, hyperpolarized a majority of putative magnocellular PVN neurons (88%, 22/25), including cells producing the anorexigenic neuropeptides, oxytocin and vasopressin. Importantly, the action of relaxin-3 persisted in the presence of tetrodotoxin and glutamate/GABA receptor antagonists, indicating its direct action on PVN neurons. Similar inhibitory effects on PVN oxytocin and vasopressin neurons were produced by the RXFP3 agonist, RXFP3-A2 (82%, 80/98 cells). In situ hybridization histochemistry revealed a strong colocalization of RXFP3 mRNA with oxytocin and vasopressin immunoreactivity in rat PVN neurons. A smaller percentage of putative parvocellular PVN neurons was sensitive to RXFP3-A2 (40%, 16/40 cells). These data, along with a demonstration of abundant peri-PVN and sparse intra-PVN relaxin-3-immunoreactive nerve fibres, originating from the nucleus incertus, the major source of relaxin-3 neurons, identify a strong inhibitory influence of relaxin-3-RXFP3 signalling on the electrical activity of PVN oxytocin and vasopressin neurons, consistent with the orexigenic effect of RXFP3 activation observed in vivo.


Assuntos
Neurônios/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Transdução de Sinais , Vasopressinas/metabolismo , Potenciais de Ação , Animais , Antagonistas GABAérgicos/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiologia , Potássio/metabolismo , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Relaxina/farmacologia , Tetrodotoxina/farmacologia
13.
Br J Pharmacol ; 174(10): 1049-1060, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27245781

RESUMO

Relaxin-3 (RLN3) is a neuropeptide that is strongly expressed in the pontine nucleus incertus (NI) and binds with high affinity to its cognate receptor RXFP3. Central administration of RLN3 in rats increases food intake and adiposity. In humans, RLN3 polymorphism has been associated with obesity and hypercholesterolaemia. Emerging evidence suggests that the effects of RLN3 may have sex-specific aspects. Thus, the RLN3 knockout female but not male mice are hypoactive. RLN3 produced stronger orexigenic and obesogenic effects in female rats compared with male rats. In addition, female rats demonstrated higher sensitivity to lower doses of RLN3. Repeated cycles of food restriction and stress were accompanied by an increase in RLN3 expression and hyperphagia in female but not in male rats. Furthermore, stress-induced binge eating in female rats was blocked by an RXFP3 receptor antagonist. RLN3 increased the expression of corticotropin releasing factor in the paraventricular hypothalamic nucleus in male but not in female rats. Conversely, in female rats, RLN3 increased the expression of orexin in the lateral hypothalamus. There is evidence that orexin directly activates the RLN3 neurons in the NI. The positive reinforcement of the RLN3 effects by orexin may intensify behavioural activation and feeding in females. Sex-specific effects of RLN3 may also depend on differential expression of RXFP3 receptors in the brain. Given the higher sensitivity of females to the orexigenic effects of RLN3 and the stress-induced activation of RLN3, the overall data suggest a possible role for RLN3 in eating disorders that show a higher propensity in women. LINKED ARTICLES: This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.


Assuntos
Peso Corporal , Ingestão de Alimentos , Proteínas do Tecido Nervoso/metabolismo , Relaxina/metabolismo , Animais , Humanos , Camundongos , Proteínas do Tecido Nervoso/administração & dosagem , Ratos , Relaxina/administração & dosagem , Fatores Sexuais
14.
Appetite ; 107: 585-595, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27616710

RESUMO

The expression of corticotropin-releasing factor (CRF), a neuropeptide that regulates endocrine and behavioral responses to stress, was assessed in the brain in rats prone or resistant to stress-induced binge-like eating of sucrose. Female Sprague-Dawley rats were subjected to unpredictable intermittent 1-h access to sucrose in non-stressful conditions or after exposure to three foot shock stress sessions. Experimental sessions were performed at metestrus, diestrus, and proestrus. The rats were assigned to the binge-like eating prone (BEP) or the binge-like eating resistant (BER) phenotypes according to the rats' persistently high or low sucrose intake following three stress sessions. The BEP rats displayed elevated consumption of sucrose in non-stressful conditions and an additional significant increase in sucrose intake in response to stress. Conversely, the BER rats showed lower sucrose intake in non-stressful conditions, and stress did not increase sucrose intake in this phenotype. The brain expression of CRF mRNA and plasma corticosterone levels were assessed 30 min after the last stress session at the diestrous phase of the estrous cycle. Stress triggered a significant increase in plasma corticosterone levels and strongly increased CRF mRNA expression in the paraventricular hypothalamic nucleus in the BER but not in the BEP rats. However, the BEP but not the BER rats demonstrated a significant increase in CRF mRNA expression in the bed nucleus of the stria terminalis (BNST) after stress. Hyporeactivity of the hypothalamic-pituitary-adrenal axis and the higher CRF expression in the BNST in BEP rats may contribute to stress-induced binge-like sucrose eating in the BEP phenotype.


Assuntos
Encéfalo/metabolismo , Bulimia/metabolismo , Bulimia/psicologia , Hormônio Liberador da Corticotropina/metabolismo , Estresse Psicológico/metabolismo , Animais , Corticosterona/sangue , Ciclo Estral , Feminino , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem
15.
PLoS One ; 11(5): e0156563, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27243579

RESUMO

The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry.


Assuntos
Potenciais de Ação/fisiologia , Núcleo Hipotalâmico Anterior/fisiologia , Comportamento Animal/fisiologia , Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Comportamento Alimentar/psicologia , Animais , Ingestão de Alimentos , Ratos , Estresse Psicológico , Sacarose
16.
Physiol Behav ; 157: 28-38, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26812591

RESUMO

Binge eating episodes are frequently stimulated by stress. We developed a model of binge eating proneness based on individual sensitivity of young female Sprague Dawley rats to significantly increase sucrose consumption in response to stress. The rats were subjected to unpredictable intermittent 1-h access to 10% sucrose. After the stabilization of sucrose intake, rats were assessed for consistency of higher (for binge-like eating prone, BEP) or lower (for binge-like eating resistant, BER) sucrose intake in response to unpredictable episodes of foot-shock stress. The objectives of this study included demonstrating face validity of the BEP model and determining if some of the features of this model were pre-existing before exposure to intermittent access to sucrose and repeated stress. The BEP rats consumed a larger (20%>BER) amount of sucrose in a discrete (1-h) period of time compared to the BER phenotype in non-stressful conditions and significantly increased sucrose intake (50%>BER) under stress. Conversely, stress did not affect sucrose intake in BER rats. BEP rats showed higher sucrose intake compared to BER rats at the beginning of darkness as well as during the light period when they were sated and not physically hungry. Analyses of the sucrose licking microstructure revealed that BEP rats had a high motivational drive to consume sucrose in non-stressful condition and an increased hedonic value of sucrose when they were exposed to stressful conditions. BEP rats consumed sucrose much more rapidly under stressful conditions compared to BER rats. Finally, BEP rats demonstrated compulsive-like intake of sucrose (assessed in the light-dark box) and a blunted stress-induced increase in plasma corticosterone levels. Body weight and chow intake were not different between the phenotypes. Before exposure to intermittent access to sucrose and repeated stress, the BEP rats showed no clear evidence for compulsive sucrose intake. However, from the first 1-h access to sucrose, the BEP rats exhibited sucrose overeating; and from the first exposure to stress before intermittent access to sucrose, the BEP rats showed a blunted increase in corticosterone plasma levels. Innate sucrose hyperconsumption and altered reactivity of the hypothalamo-pituitary adrenal (HPA) axis to stress may be involved in the development of binge-like eating. Increased perceived hedonic value of palatable food and an increased motivation to consume this food despite aversive conditions as well as deregulated reactivity of the HPA axis may contribute to stress-induced bingeing on sucrose in BEP rats.


Assuntos
Transtorno da Compulsão Alimentar/sangue , Transtorno da Compulsão Alimentar/fisiopatologia , Comportamento Compulsivo/etiologia , Corticosterona/sangue , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Fatores Etários , Análise de Variância , Animais , Modelos Animais de Doenças , Comportamento de Ingestão de Líquido/fisiologia , Ingestão de Alimentos/fisiologia , Ciclo Estral/fisiologia , Feminino , Ratos , Ratos Sprague-Dawley , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem
17.
Neuropharmacology ; 102: 207-15, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26607097

RESUMO

Binge eating is frequently stimulated by stress. The neuropeptide relaxin-3 (RLN3) and its native receptor RXFP3 are implicated in stress and appetitive behaviors. We investigated the dynamics of the central RLN3/RXFP3 system in a newly established model of stress-induced binge eating. Female Sprague-Dawley rats were subjected to unpredictable intermittent 1-h access to 10% sucrose. When sucrose intake stabilized, rats were assessed for consistency of higher or lower sucrose intake in response to three unpredictable episodes of foot-shock stress; and assigned as binge-like eating prone (BEP) or binge-like eating resistant (BER). BEP rats displayed elevated consumption of sucrose under non-stressful conditions (30% > BER) and an additional marked increase in sucrose intake (60% > BER) in response to stress. Conversely, sucrose intake in BER rats was unaltered by stress. Chow intake was similar in both phenotypes on 'non-stress' days, but was significantly reduced by stress in BER, but not BEP, rats. After stress, BEP, but not BER, rats displayed a significant increase in RLN3 mRNA levels in the nucleus incertus. In addition, in response to stress, BEP, but not BER, rats had increased RXFP3 mRNA levels in the paraventricular and supraoptic nuclei of the hypothalamus. Intracerebroventricular administration of a selective RXFP3 antagonist, R3(B1-22)R, blocked the stress-induced increase in sucrose intake in BEP rats and had no effect on sucrose intake in BER rats. These results provide important evidence for a role of the central RLN3/RXFP3 system in the regulation of stress-induced binge eating in rats, and have therapeutic implications for eating disorders.


Assuntos
Bulimia/metabolismo , Ingestão de Alimentos/fisiologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Peptídeos/antagonistas & inibidores , Relaxina/metabolismo , Estresse Psicológico/metabolismo , Sacarose/administração & dosagem , Animais , Bulimia/etiologia , Ingestão de Alimentos/efeitos dos fármacos , Eletrochoque , Feminino , Hipotálamo/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Relaxina/genética , Estresse Psicológico/complicações , Zona Incerta/metabolismo
18.
ACS Appl Mater Interfaces ; 7(37): 20538-47, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26322861

RESUMO

This study presents a new approach to the formulation of functional nanofluids with high solid loading and low viscosity while retaining the surface activity of nanoparticles, in particular, their electrochemical response. The proposed methodology can be applied to a variety of functional nanomaterials and enables exploration of nanofluids as a medium for industrial applications beyond heat transfer fluids, taking advantage of both liquid behavior and functionality of dispersed nanoparticles. The highest particle concentration achievable with pristine 25 nm titania (TiO2) nanoparticles in aqueous electrolytes (pH 11) is 20 wt %, which is limited by particle aggregation and high viscosity. We have developed a scalable one-step surface modification procedure for functionalizing those TiO2 nanoparticles with a monolayer coverage of propyl sulfonate groups, which provides steric and charge-based separation of particles in suspension. Stable nanofluids with TiO2 loadings up to 50 wt % and low viscosity are successfully prepared from surface-modified TiO2 nanoparticles in the same electrolytes. Viscosity and thermal conductivity of the resulting nanofluids are evaluated and compared to nanofluids prepared from pristine nanoparticles. Furthermore, it is demonstrated that the surface-modified titania nanoparticles retain more than 78% of their electrochemical response as compared to that of the pristine material. Potential applications of the proposed nanofluids include, but are not limited to, electrochemical energy storage and catalysis, including photo- and electrocatalysis.

19.
Eur J Neurosci ; 41(4): 420-33, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25417941

RESUMO

Sucrose-overeating rats with decreased anorectic response to stress showed lower stress-induced activation of c-fos expression in the lateral septum (LS). The present study tested a hypothesis that neuronal inhibition in the LS is important for the development and maintenance of the sucrose-overeating phenotype. Sucrose overeating was developed with weekly episodes of food restriction (21 h per day, 4 days per week) followed by 1-h access to sucrose. The anorectic effects of stress on 1-h sucrose intake were estimated using weekly foot shock stress sessions. The development of the sucrose-overeating phenotype was accompanied by a decrease in the anorectic effects of stress and by an increase in LS mRNA expression of a γ-aminobutyric acid (GABA) synthesising enzyme, glutamic acid decarboxylase 67 in stressed rats. Direct recordings of neuronal firing in the LS in rats submitted to repeated weekly cycles of food restriction, sucrose refeeding and stress showed that the development of sucrose overeating increased the percentage of LS neurons inhibited during anticipation and at the start of clusters (CS) of sucrose licking. In addition, the CS-excited LS neurons showed a decrease in responsiveness to sucrose during the development of sucrose overeating. Direct injection of baclofen, an agonist of the GABAB receptor, into the LS decreased the anorectic effects of stress and increased sucrose intake. These results suggest that an increase in inhibitory effects in the LS is important for the development of sucrose overeating and the decreased anorectic effects of stress.


Assuntos
Anorexia/fisiopatologia , Sacarose Alimentar/farmacologia , Hiperfagia/fisiopatologia , Núcleos Septais/fisiopatologia , Estresse Psicológico/fisiopatologia , Potenciais de Ação , Animais , Anorexia/etiologia , Anorexia/metabolismo , Antagonistas de Receptores de GABA-B/farmacologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hiperfagia/etiologia , Hiperfagia/metabolismo , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleos Septais/citologia , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo
20.
Endocrinology ; 156(2): 523-33, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25406021

RESUMO

This study compared the effects of relaxin-3 (RLN3) on food intake, plasma corticosterone, and the expression of corticotropin-releasing factor (CRF) in male and female rats. RLN3 was injected into the lateral ventricle at 25, 200, and 800 pmol concentrations. RLN3 at 25 pmol increased food intake (grams) at 30 and 60 minutes after injection in female but not male rats. Female rats also showed higher increase in relative to body weight (BW) food intake (mg/g BW) for all RLN3 concentrations at 30 minutes and for 800 pmol of RLN3 at 60 minutes. Moreover, RLN3 at 800 pmol significantly increased 24-hour BW gain in female but not male rats. At 60 minutes after administration, 800 pmol of RLN3 produced a significant increase in plasma corticosterone and in the expression of CRF and c-fos mRNAs in the parvocellular paraventricular hypothalamic nucleus (PVN) in male but not female rats. The levels of c-fos mRNA in the magnocellular PVN were increased by RLN3 but did not differ between the sexes. Conversely, expression of CRF mRNA in the medial preoptic area was increased in female rats but was not sensitive to 800 pmol of RLN3. In the bed nucleus of the stria terminalis, 800 pmol of RLN3 significantly increased CRF mRNA expression in female but not male rats. Therefore, female rats showed more sensitivity and stronger food intake increase in response to RLN3. The differential effects of RLN3 on CRF expression in the PVN and bed nucleus of the stria terminalis may contribute to the sex-specific difference in the behavioral response.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Ingestão de Alimentos , Proteínas do Tecido Nervoso/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Relaxina/metabolismo , Animais , Núcleo Central da Amígdala/metabolismo , Corticosterona/sangue , Feminino , Injeções Intraventriculares , Masculino , Área Pré-Óptica/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Núcleos Septais/metabolismo , Caracteres Sexuais , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA