Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(22): 9071-9076, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36342418

RESUMO

Surface diffusion is intimately correlated with crystal orientation and surface structure. Fast surface diffusion accelerates phase transformation and structural evolution of materials. Here, through in situ transmission electron microscopy observation, we show that a copper nanowire with dense nanoscale coherent twin-boundary (CTB) defects evolves into a zigzag configuration under electric-current driven surface diffusion. The hindrance at the CTB-intercepted concave triple junctions decreases the effective surface diffusivity by almost 1 order of magnitude. The energy barriers for atomic migration at the concave junctions and different faceted surfaces are computed using density functional theory. We proposed that such a stable zigzag surface is shaped not only by the high-diffusivity facets but also by the stalled atomic diffusion at the concave junctions. This finding provides a defect-engineering route to develop robust interconnect materials against electromigration-induced failures for nanoelectronic devices.

2.
Nano Lett ; 20(3): 1510-1516, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725308

RESUMO

Crystalline Mo5O14 exhibits distinctive structural features such as tunnel structure and pseudolamellar arrangement according to the ideal model. However, the spatial resolution of the conventional technique of transmission electron microscopy (TEM) is insufficient to distinguish the actual positions of atoms. In this work, we aimed to systematically analyze and identify the Mo5O14 nanowires fabricated by the chemical vapor deposition (CVD) process. Utilizing high-angle annular dark-field (HAADF), annular bright-field (ABF), and enhanced annular bright-field (E-ABF) within the scanning transmission electron microscope (STEM) mode reveals the structural features at the atomic scale. In addition, the ultrahigh resolution images have confirmed the crystallographic insights in [001] growth direction for the Mo5O14 nanowires with a tunnel structure throughout the nanowire. The cross-sectional images show the unique close-packed plane and atomic arrangement with a network of MoO6 octahedra and MoO7 pentagonal bipyramids. These results are consistent with the theoretical atomic arrangement, supporting the realization of Mo5O14-type catalysts used in the selective oxidation process and battery applications.

3.
Adv Sci (Weinh) ; 6(24): 1902363, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31890465

RESUMO

The technologies of 3D vertical architecture have made a major breakthrough in establishing high-density memory structures. Combined with an array structure, a 3D high-density vertical resistive random access memory (VRRAM) cross-point array is demonstrated to efficiently increase the device density. Though electrochemical migration (ECM) resistive random access (RRAM) has the advantage of low power consumption, the stability of the operating voltage requires further improvements due to filament expansions and deterioration. In this work, 3D-VRRAM arrays are designed. Two-layered RRAM cells, with one inert and one active sidewall electrode stacked at a cross-point, are constructed, where the thin film sidewall electrode in the VRRAM structure is beneficial for confining the expansions of the conducting filaments. Thus, the top cell (Pt/ZnO/Pt) and the bottom cell (Ag/ZnO/Pt) in the VRRAM structure, which are switched by different mechanisms, can be analyzed at the same time. The oxygen vacancy filaments in the Pt/ZnO/Pt cell and Ag filaments in the Ag/ZnO/Pt cell are verified. The 40 nm thickness sidewall electrode restricts the filament size to nanoscale, which demonstrates the stability of the operating voltages. Additionally, the 0.3 V operating voltage of Ag/ZnO/Pt ECM VRRAM demonstrates the potential of low power consumption of VRRAM arrays in future applications.

4.
Nano Lett ; 18(9): 6064-6070, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30130112

RESUMO

Transition metal oxide nanowires have attracted extensive attention because of their physical characteristics. Among them, ZnO nanowires have great potential. Due to the multifunctional properties of ZnO, devices built using ZnO-based heterostructures always perform well. In this study, interesting diffusion behavior between ZnO nanowires and Fe metal was observed by using in situ transmission electron microscopy. ZnO nanowires and Fe metal were annealed under ultrahigh vacuum (UHV) conditions at 800 K. By controlling the annealing time for the solid-state diffusion, porous Fe3O4 and unique ZnO/porous Fe3O4 nanowire heterostructures were formed. As-formed porous Fe3O4 nanowires with voids can be divided into two types by appearance: plate-like voids and zigzag-like hollow voids. From high-resolution transmission electron microscopy (HRTEM) images and fast Fourier transform (FFT) diffraction patterns, we found that plate-like voids formed along the {111} plane, which was the close-packed plane of Fe3O4, and that zigzag-like hollow voids formed along the {111}/{022} planes. Moreover, a transition region existed during diffusion, with a parallel relationship found between the Fe3O4 crystal with plate-like voids and the ZnO crystal. A sharp interface was determined to exist between the Fe3O4 crystal with zigzag-like hollow voids and ZnO. These oriented porous Fe3O4/ZnO axial nanowire heterostructures exhibited a unique appearance and interesting formation behavior. Furthermore, the structures had a high surface-area-to-volume ratio, which is promising for sensing applications.

5.
Small ; 14(6)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205791

RESUMO

The crossbar structure of resistive random access memory (RRAM) is the most promising technology for the development of ultrahigh-density devices for future nonvolatile memory. However, only a few studies have focused on the switching phenomenon of crossbar RRAM in detail. The main purpose of this study is to understand the formation and disruption of the conductive filament occurring at the crossbar center by real-time transmission electron microscope observation. Core-shell Ni/NiO nanowires are utilized to form a cross-structure, which restrict the position of the conductive filament to the crosscenter. A significant morphological change can be observed near the crossbar center, which results from the out-diffusion and backfill of oxygen ions. Energy dispersive spectroscopy and electron energy loss spectroscopy demonstrate that the movement of the oxygen ions leads to the evolution of the conductive filament, followed by redox reactions. Moreover, the distinct reliability of the crossbar device is measured via ex situ experiments. In this work, the switching mechanism of the crossbar core-shell nanowire structure is beneficial to overcome the problem of nanoscale minimization. The experimental method shows high potential to fabricate high-density RRAM devices, which can be applied to 3D stacked package technology and neuromorphic computing systems.

6.
ACS Nano ; 8(9): 9457-62, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25133955

RESUMO

Phase change random access memory (PCRAM) has been extensively investigated for its potential applications in next-generation nonvolatile memory. In this study, indium(III) selenide (In2Se3) was selected due to its high resistivity ratio and lower programming current. Au/In2Se3-nanowire/Au phase change memory devices were fabricated and measured systematically in an in situ transmission electron microscope to perform a RESET/SET process under pulsed and dc voltage swept mode, respectively. During the switching, we observed the dynamic evolution of the phase transformation process. The switching behavior resulted from crystalline/amorphous change and revealed that a long pulse width would induce the amorphous or polycrystalline state by different pulse amplitudes, supporting the improvement of the writing speed, retention, and endurance of PCRAM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA