Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171325, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428604

RESUMO

Despite the well-established recognition of the health hazards posed by PM2.5-bound PAHs, a comprehensive understanding of their source-specific impact has been lacking. In this study, the health risks associated with PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and source-specific contributions were investigated in the urban region of Taipei during both cold and warm seasons. The levels of PM2.5-bound PAHs and their potential health risks across different age groups of humans were also characterized. Diagnostic ratios and positive matrix factorization analysis were utilized to identify the sources of PM2.5-bound PAHs. Moreover, potential source contribution function (PSCF), concentration-weighted trajectory (CWT) and source regional apportionment (SRA) analyses were employed to determine the potential source regions. Results showed that the total PAHs (TPAHs) concentrations ranged from 0.08 to 2.37 ng m-3, with an average of 0.69 ± 0.53 ng m-3. Vehicular emissions emerged as the primary contributor to PM2.5-bound PAHs, constituting 39.8 % of the TPAHs concentration, followed by industrial emissions (37.6 %), biomass burning (13.8 %), and petroleum/oil volatilization (8.8 %). PSCF and CWT analyses revealed that industrial activities and shipping processes in northeast China, South China Sea, Yellow Sea, and East China Sea, contributed to the occurrence of PM2.5-bound PAHs in Taipei. SRA identified central China as the primary regional contributor of ambient TPAHs in the cold season and Taiwan in the warm season, respectively. Evaluations of incremental lifetime cancer risk demonstrated the highest risk for adults, followed by children, seniors, and adolescents. The assessments of lifetime lung cancer risk showed that vehicular and industrial emissions were the main contributors to cancer risk induced by PM2.5-bound PAHs. This research emphasizes the essential role of precisely identifying the origins of PM2.5-bound PAHs to enhance our comprehension of the related human health hazards, thus providing valuable insights into the mitigation strategies.


Assuntos
Poluentes Atmosféricos , Neoplasias Pulmonares , Hidrocarbonetos Policíclicos Aromáticos , Criança , Humanos , Adolescente , Poluentes Atmosféricos/análise , Estações do Ano , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental/métodos , China , Ásia Oriental , Medição de Risco
2.
Environ Res ; 234: 116601, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429395

RESUMO

Transportation emissions significantly affect human health, air quality, and climate in urban areas. This study conducted experiments in an urban tunnel in Taipei, Taiwan, to characterize vehicle emissions under real driving conditions, providing emission factors of PM2.5, eBC, CO, and CO2. By applying multiple linear regression, it derives individual emission factors for heavy-duty vehicles (HDVs), light-duty vehicles (LDVs), and motorcycles (MCs). Additionally, the oxidative potential using dithiothreitol assay (OPDTT) was established to understand PM2.5 toxicity. Results showed HDVs dominated PM2.5 and eBC concentrations, while LDVs and MCs influenced CO and CO2 levels. The CO emission factor for transportation inside the tunnel was found to be higher than those in previous studies, likely owing to the increased fraction of MCs, which generally emit higher CO levels. Among the three vehicle types, HDVs exhibited the highest PM2.5 and eBC emission factors, while CO and CO2 levels were relatively higher for LDVs and MCs. The OPDTTm demonstrated that fresh traffic emissions were less toxic than aged aerosols, but higher OPDTTv indicated the impact on human health cannot be ignored. This study updates emission factors for various vehicle types, aiding in accurate assessment of transportation emissions' effects on air quality and human health, and providing a guideline for formulating mitigation strategies.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Humanos , Idoso , Emissões de Veículos/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Motocicletas , Dióxido de Carbono , Monitoramento Ambiental/métodos , Material Particulado/análise , Estresse Oxidativo , Veículos Automotores
3.
Sci Total Environ ; 892: 164392, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37244610

RESUMO

Over the past decades, the pollution of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere has become a major concern worldwide due to their adverse effects on human health, air quality and climate. Volatile organic compounds (VOCs) are crucial precursors of O3 and SOA, but identifying the primary sources of VOCs that contribute to the formation of O3 and SOA has been challenging due to the rapid consumption of VOCs by oxidants in the air. To address this issue, a study was conducted in a Taipei urban area in Taiwan, where the hourly data of 54 VOC species were collected from March 2020 to February 2021 detected by Photochemical Assessment Monitoring Stations (PAMS). The initial mixing ratios of VOCs (VOCsini) were determined by combining the observed VOCs (VOCsobs) and the consumed VOCs resulting from photochemical reactions. Additionally, the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) were estimated based on VOCsini. The OFP derived from VOCsini (OFPini) was found to exhibit a strong correlation with O3 mixing ratios (R2 = 0.82), whereas the OFP obtained from VOCsobs did not show such a correlation. Isoprene, toluene and m,p-xylene were the top three species contributing to OFPini, while toluene and m,p-xylene were the top two contributors to SOAFPini. Positive matrix factorization analysis revealed that biogenic, consumer/household products, and industrial solvents were the major contributors to OFPini in four seasons, and SOAFPini mostly came from consumer/household products and industrial solvents. This study highlights the importance of considering photochemical loss caused by different VOCs reactivity in the atmosphere when evaluating OFP and SOAFP. Moreover, it emphasizes the need to prioritize controlling the sources emitting the dominant VOC precursors of O3 and SOA to effectively alleviate the scenarios of elevated O3 and particulate matter.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Humanos , Ozônio/análise , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental/métodos , Ásia Oriental , Aerossóis/análise , Tolueno/análise , Solventes/análise , China
4.
ACS Appl Mater Interfaces ; 15(16): 20130-20140, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36946987

RESUMO

Development of highly efficient and stable non-precious metal-based pH-universal catalysts for hydrogen evolution reaction (HER) at high current densities remains challenging for water electrolysis-based green hydrogen production. Herein, a simple solvothermal process was developed to synthesize a NiMo metal-organic framework (MOF), from which a carbon-armored Ni4Mo alloy of an interwoven nanosheet structure was derived with a two-stage thermal treatment, to serve as a high-performance pH-universal HER catalyst. It requires low overpotentials of 22, 48, and 98 mV to achieve a current density of -10 mA cm-2 and 192, 267, and 360 mV to deliver an ultrahigh current density of -500 mA cm-2 in alkaline, acidic, and neutral media, respectively, and exhibits remarkable operational stability at an ultrahigh initial current density of -500 mA cm-2 for over 50 h, making it promising for applications in large-scale green hydrogen production. The success can be attributed to the unique catalyst design of a carbon-armored, composition-optimized NiMo alloy of an advantageous nanostructure of interwoven nanosheets for enhanced utilization of active sites and mass transfer of electrolytes and gaseous products, made possible with a MOF-derivation fabrication approach.

5.
Environ Res ; 216(Pt 2): 114523, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270534

RESUMO

Acute exposure to fresh traffic-related air pollutants (TRAPs) can be high for road users, including motorbike drivers, cyclists, and pedestrians. However, evaluating the toxicity of fresh traffic emissions from on-road vehicles is challenging since pollution properties can change dynamically within a short distance and time. This study demonstrated a mobile platform equipped with an On-Board Diagnostic II (OBDII) system, a tailor-made portable emission measurement system, and an electrostatic air-liquid interface exposure system with human monocytic THP-1 cells to characterize on-road tailpipe emissions under real driving conditions. High number concentrations up to 106-107 # cm-3 of ultrafine particles (UFPs) were observed for a gasoline engine at the cold-start stage and a diesel engine during particulate filter regeneration. In particular, a substantial fraction of freshly emitted UFPs within the size less than 23 nm were observed and should be cautioned. The potential toxicity of fresh TRAPs was quantified by cell viability, cytotoxicity, oxidative stress, and inflammatory biomarkers. Results show that the decreased cell viability, increased lactate dehydrogenase (LDH) activity, and high oxidative stress induced by the fresh TRAPs were potentially contributed by gaseous pollutants as well as particles, especially driving with the high idling frequency. Moreover, the dominant contributor to the toxicity is different for gasoline's and diesel's TRAPs. Characterizing on-road air pollutant toxicity as well as physicochemical properties using an innovative mobile platform can fill this knowledge gap.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Material Particulado/análise , Gasolina/análise , Tamanho da Partícula , Monitoramento Ambiental/métodos , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Veículos Automotores
6.
J Colloid Interface Sci ; 623: 327-336, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35594591

RESUMO

Developments of non-precious metal based active and stable catalysts are of great importance and challenge to green hydrogen production from acidic electrocatalytic water splitting. Design of composite catalysts with synergy between active and stable components proves to be a promising approach. Herein, N-doped carbon armored Co3O4 hollow nanocubes electrochemically anchored on fluorine-doped tin oxide (FTO) substrates are developed as efficient and stable catalysts for acidic oxygen evolution reactions. Co3O4 acts as the active component with N-doped carbon coating layer serving as the stable protection component, shielding Co3O4 from direct attack of anodic dissolution. Electrochemical fixation offers firm holding of the composite catalyst onto acid-tolerant FTO substrates and hollow nanocubes serve as nano-reactors for confined fast reactions. Under optimal conditions, the composite catalyst achieves an overpotential of 465 mV at 10 mA cm-2 in 0.5 M H2SO4, and stays stable for 12 hr with a 10% increment in applied potentials.

7.
Sci Total Environ ; 818: 151759, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34822889

RESUMO

The deterioration of visibility due to air pollutants and relative humidity has been a serious environmental problem in eastern Asia. In most previous studies, chemical compositions of atmospheric particles were provided using filter-based offline analyses, which were unable to provide long-term and in-situ measurements that resolve sufficient temporal variations of air pollution and meteorology, hindering the resolution of the relationship between air quality and visibility. Here, we present a year-long continuously measured data from a comprehensive suite of online instruments to investigate diurnal and seasonal impacts of the aerosol chemical compositions in PM2.5 on visibility seasonally and diurnally. The measured dry aerosol extinction at λ = 550 nm reached a closure with that predicted by aerosol compositions within 12%. However, the hygroscopic growth of particles under ambient RH could enhance the aerosol extinction by a factor of 2-6, matching the perceptive visibility of the public. Particulate ammonium nitrate was most sensitive to reducing visibility, while ammonium sulfate contributed the most to the light extinction. In spring and winter, the monsoon and stagnant air masses reduced the visibility and increased PM2.5 (>35 µg m-3). The moisture was found to substantially enhance the light extinction under RH = 60-90%, reducing visibility by approximately 15 km, largely attributed to hygroscopic inorganic salts. This study serves as a metric to highlight the need to consider the influence of RH, and aqueous reactions in producing secondary inorganic aerosols on atmospheric visibility, underpinning the more accurate mitigation strategies of air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Ásia Oriental , Umidade , Material Particulado/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA