Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39093115

RESUMO

A new 14 MeV neutron spectrometer utilizing the magnetic proton recoil (MPR) technique is under development for the SPARC tokamak. This instrument measures neutrons by converting them into protons, whose momenta are subsequently analyzed using a series of magnets before detection by an array of scintillators known as the hodoscope. In this work, we explore various solutions for the hodoscope detectors through laboratory tests with radioactive sources and simulations. We present findings on light collection and pulse shape discrimination based on detector types, as well as optimal solutions for photo-detectors studying the differences between SiPM and PMT. Our results also led to the determination of a better optimized design for the hodoscope detectors, consisting of a 0.7 cm width and a 13 cm length EJ276D scintillation rod.

2.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39101790

RESUMO

The SPARC tokamak will be equipped with a hard X-ray (HXR) monitor system capable of measuring the bremsstrahlung emission from runaway electrons with photon energies in excess of about 100 keV. This diagnostic will detect the formation of runaway electron beams during plasma start-up and inform the plasma control system to terminate the discharge early to protect the machine. In this work, we present a 0D estimate of the HXR emission in SPARC during plasma start-up. Then we discuss the characterization of a prototype of the HXR monitor. The detector mounts a 1 × 1-in.2 LaBr3 inorganic scintillator coupled with a photomultiplier tube and has been tested with γ-ray sources to find its dynamic range. Finally, two possible modes of operation for spectroscopic and current mode measurements on SPARC are proposed.

3.
Rev Sci Instrum ; 93(11): 113512, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461481

RESUMO

Dedicated nuclear diagnostics have been designed, developed, and built within EUROFUSION enhancement programs in the last ten years for installation at the Joint European Torus and capable of operation in high power Deuterium-Tritium (DT) plasmas. The recent DT Experiment campaign, called DTE2, has been successfully carried out in the second half of 2021 and provides a unique opportunity to evaluate the performance of the new nuclear diagnostics and for an understanding of their behavior in the record high 14 MeV neutron yields (up to 4.7 × 1018 n/s) and total number of neutrons (up to 2 × 1019 n) achieved on a tokamak. In this work, we will focus on the 14 MeV high resolution neutron spectrometers based on artificial diamonds which, for the first time, have extensively been used to measure 14 MeV DT neutron spectra with unprecedented energy resolution (Full Width at Half Maximum of ≈1% at 14 MeV). The work will describe their long-term stability and operation over the DTE2 campaign as well as their performance as neutron spectrometers in terms of achieved energy resolution and high rate capability. This important experience will be used to outline the concept of a spectroscopic neutron camera for the SPARC tokamak. The proposed neutron camera will be the first one to feature the dual capability to measure (i) the 2.5 and 14 MeV neutron emissivity profile via the conventional neutron detectors based on liquid or plastics scintillators and (ii) the 14 MeV neutron spectral emission via the use of high-resolution diamond-based spectrometers. The new opportunities opened by the spectroscopic neutron camera to measure plasma parameters will be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA