RESUMO
Probody therapeutics (Pb-Txs) are conditionally activated antibody-drug conjugates (ADCs) designed to remain inactive until proteolytically activated in the tumor microenvironment, enabling safer targeting of antigens expressed in both tumor and normal tissue. Previous attempts to target CD71, a highly expressed tumor antigen, have failed to establish an acceptable therapeutic window due to widespread normal tissue expression. This study evaluated whether a probody-drug conjugate targeting CD71 can demonstrate a favorable efficacy and tolerability profile in preclinical studies for the treatment of cancer. CX-2029, a Pb-Tx conjugated to maleimido-caproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E, was developed as a novel cancer therapeutic targeting CD71. Preclinical studies were performed to evaluate the efficacy and safety of this anti-CD71 PDC in patient-derived xenograft (PDX) mouse models and cynomolgus monkeys, respectively. CD71 expression was detected at high levels by IHC across a broad range of tumor and normal tissues. In vitro, the masked Pb-Tx form of the anti-CD71 PDC displayed a >50-fold reduced affinity for binding to CD71 on cells compared with protease-activated, unmasked anti-CD71 PDC. Potent in vivo tumor growth inhibition (stasis or regression) was observed in >80% of PDX models (28/34) at 3 or 6 mg/kg. Anti-CD71 PDC remained mostly masked (>80%) in circulation throughout dosing in cynomolgus monkeys at 2, 6, and 12 mg/kg and displayed a 10-fold improvement in tolerability compared with an anti-CD71 ADC, which was lethal. Preclinically, anti-CD71 PDC exhibits a highly efficacious and acceptable safety profile that demonstrates the utility of the Pb-Tx platform to target CD71, an otherwise undruggable target. These data support further clinical development of the anti-CD71 PDC CX-2029 as a novel cancer therapeutic.
Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Chumbo , Macaca fascicularis/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Immune-checkpoint blockade has revolutionized cancer treatment. However, most patients do not respond to single-agent therapy. Combining checkpoint inhibitors with other immune-stimulating agents increases both efficacy and toxicity due to systemic T-cell activation. Protease-activatable antibody prodrugs, known as Probody therapeutics (Pb-Tx), localize antibody activity by attenuating capacity to bind antigen until protease activation in the tumor microenvironment. Herein, we show that systemic administration of anti-programmed cell death ligand 1 (anti-PD-L1) and anti-programmed cell death protein 1 (anti-PD-1) Pb-Tx to tumor-bearing mice elicited antitumor activity similar to that of traditional PD-1/PD-L1-targeted antibodies. Pb-Tx exhibited reduced systemic activity and an improved nonclinical safety profile, with markedly reduced target occupancy on peripheral T cells and reduced incidence of early-onset autoimmune diabetes in nonobese diabetic mice. Our results confirm that localized PD-1/PD-L1 inhibition by Pb-Tx can elicit robust antitumor immunity and minimize systemic immune-mediated toxicity. These data provide further preclinical rationale to support the ongoing development of the anti-PD-L1 Pb-Tx CX-072, which is currently in clinical trials.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/uso terapêutico , Imunoterapia/métodos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Microambiente TumoralRESUMO
Costimulation via CD137 (4-1BB) enhances antitumor immunity mediated by cytotoxic T lymphocytes. Anti-CD137 agonist antibodies elicit mild liver inflammation in mice, and the maximum tolerated dose of Urelumab, an anti-human CD137 agonist monoclonal antibody, in the clinic was defined by liver inflammation-related side effects. A protease-activated prodrug form of the anti-mouse CD137 agonist antibody 1D8 (1D8 Probody therapeutic, Pb-Tx) was constructed and found to be selectively activated in the tumor microenvironment. This construct, which encompasses a protease-cleavable linker holding in place a peptide that masks the antigen binding site, exerted antitumor effects comparable to the unmodified antibody but did not result in liver inflammation. Moreover, it efficaciously synergized with both PD-1 blockade and adoptive T-cell therapy. Surprisingly, minimal active Pb-Tx reached tumor-draining lymph nodes, and regional lymphadenectomy did not abrogate antitumor efficacy. By contrast, S1P receptor-dependent recirculation of T cells was absolutely required for efficacy. The preferential cleavage of the anti-CD137 Pb-Tx by tumor proteases offers multiple therapeutic opportunities, including neoadjuvant therapy, as shown by experiments in which the Pb-Tx is given prior to surgery to avoid spontaneous metastases.
Assuntos
Antineoplásicos/toxicidade , Antineoplásicos/uso terapêutico , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoterapia , Inflamação/patologia , Fígado/patologia , Neoplasias Pulmonares/secundário , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Camundongos , Terapia Neoadjuvante , Peptídeo Hidrolases/metabolismoRESUMO
Descriptive qualitative interviews were conducted with 16 women who had given birth in the previous 5 years to identify factors that influenced their desire to become pregnant. All interviews were audiotaped. Following the interviews, the texts were transcribed verbatim and analyzed using Giorgi's method. Five themes emerged from the interviews: (1) timing; (2) spacing; (3) meeting personal criteria; (4) desire for the experience of pregnancy, birth, and parenting; and (5) extended family in close proximity. The study's findings offer an initial step in understanding the attitudes, motivations, and beliefs of healthy childbearing women and their desire for pregnancy. Increased understanding may help health-care providers develop interventions that not only assist women to conceive as desired but also prevent unplanned pregnancies.
RESUMO
Prions in Saccharomyces cerevisiae are inherited ordered aggregates reliant upon the disaggregase Hsp104 for stable maintenance. The function of other factors in the natural prion cycle is unclear. We constructed yeast-bacterial chimeric chaperones to resolve the roles of Hsp104 domains, and by extension chaperones that interact with these domains, in prion propagation. Our results show that, as with amorphous aggregate dissolution, the Hsp70/40 system recruits prion substrates to Hsp104 via its top ring. By adapting our chimera to couple to an inactive protease "trap," we monitored the reaction products of prion propagation in vivo. We find that prion maintenance is accompanied by translocation of prion proteins through Hsp104 hexamers and that both processes critically rely upon the Hsp40 Sis1. Our data suggest that yeast prion replication is a natural extension of chaperone activity in dissolving amorphous aggregates, distinguished from its ancestral reaction by the ordered, self-propagating structure of the substrate.
Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicação do DNA , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Príons/química , Príons/genética , Ligação Proteica/genética , Conformação Proteica , Estrutura Terciária de Proteína/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por SubstratoRESUMO
Shigella dysenteriae serotype 1, a major cause of bacillary dysentery in humans, can use heme as a source of iron. Genes for the transport of heme into the bacterial cell have been identified, but little is known about proteins that control the fate of the heme molecule after it has entered the cell. The shuS gene is located within the heme transport locus, downstream of the heme receptor gene shuA. ShuS is a heme binding protein, but its role in heme utilization is poorly understood. In this work, we report the construction of a chromosomal shuS mutant. The shuS mutant was defective in utilizing heme as an iron source. At low heme concentrations, the shuS mutant grew slowly and its growth was stimulated by either increasing the heme concentration or by providing extra copies of the heme receptor shuA on a plasmid. At intermediate heme concentrations, the growth of the shuS mutant was moderately impaired, and at high heme concentrations, shuS was required for growth on heme. The shuS mutant did not show increased sensitivity to hydrogen peroxide, even at high heme concentrations. ShuS was also required for optimal utilization of heme under microaerobic and anaerobic conditions. These data are consistent with the model in which ShuS binds heme in a soluble, nontoxic form and potentially transfers the heme from the transport proteins in the membrane to either heme-containing or heme-degrading proteins. ShuS did not appear to store heme for future use.
Assuntos
Proteínas de Bactérias/metabolismo , Heme/metabolismo , Ferro/metabolismo , Shigella dysenteriae/metabolismo , Aerobiose , Anaerobiose , Proteínas de Bactérias/genética , Heme/toxicidade , Peróxido de Hidrogênio/toxicidade , Oxidantes/toxicidade , Estresse Oxidativo/fisiologia , Plasmídeos , Shigella dysenteriae/efeitos dos fármacos , Shigella dysenteriae/genéticaRESUMO
GroEL/S chaperonin ring complexes fold many unrelated proteins. To understand the basis and extent of the chaperonin substrate spectrum, we used rounds of selection and DNA shuffling to obtain GroEL/S variants that dramatically enhanced folding of a single substrate-green fluorescent protein (GFP). Changes in the substrate-optimized chaperonins increase the polarity of the folding cavity and alter the ATPase cycle. These findings reveal a surprising plasticity of GroEL/S, which can be exploited to aid folding of recombinant proteins. Our studies also reveal a conflict between specialization and generalization of chaperonins as increased GFP folding comes at the expense of the ability of GroEL/S to fold its natural substrates. This conflict and the nature of the ring structure may help explain the evolution of cellular chaperone systems.