Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Cachexia Sarcopenia Muscle ; 14(6): 2520-2531, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37909859

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive muscle degenerative disorder, culminating in a complete loss of ambulation, hypertrophic cardiomyopathy and a fatal cardiorespiratory failure. Necroptosis is the form of necrosis that is dependent upon the receptor-interacting protein kinase (RIPK) 3; it is involved in several inflammatory and neurodegenerative conditions. We previously identified RIPK3 as a key player in the acute myonecrosis affecting the hindlimb muscles of the mdx dystrophic mouse model. Whether necroptosis also mediates respiratory and heart disorders in DMD is currently unknown. METHODS: Evidence of activation of the necroptotic axis was examined in dystrophic tissues from Golden retriever muscular dystrophy (GRMD) dogs and R-DMDdel52 rats. A functional assessment of the involvement of necroptosis in dystrophic animals was performed on mdx mice that were genetically depleted for RIPK3. Dystrophic mice aged from 12 to 18 months were analysed by histology and molecular biology to compare the phenotype of muscles from mdxRipk3+/+ and mdxRipk3-/- mice. Heart function was also examined by echocardiography in 40-week-old mice. RESULTS: RIPK3 expression in sartorius and biceps femoris muscles from GRMD dogs positively correlated to myonecrosis levels (r = 0.81; P = 0.0076). RIPK3 was also found elevated in the diaphragm (P ≤ 0.05). In the slow-progressing heart phenotype of GRMD dogs, the phosphorylated form of RIPK1 at the Serine 161 site was dramatically increased in cardiomyocytes. A similar p-RIPK1 upregulation characterized the cardiomyocytes of the severe DMDdel52 rat model, associated with a marked overexpression of Ripk1 (P = 0.007) and Ripk3 (P = 0.008), indicating primed activation of the necroptotic pathway in the dystrophic heart. MdxRipk3-/- mice displayed decreased compensatory hypertrophy of the heart (P = 0.014), and echocardiography showed a 19% increase in the relative wall thickness (P < 0.05) and 29% reduction in the left ventricle mass (P = 0.0144). Besides, mdxRipk3-/- mice presented no evidence of a regenerative default or sarcopenia in skeletal muscles, moreover around 50% less affected by fibrosis (P < 0.05). CONCLUSIONS: Our data highlight molecular and histological evidence that the necroptotic pathway is activated in degenerative tissues from dystrophic animal models, including the diaphragm and the heart. We also provide the genetic proof of concept that selective inhibition of necroptosis in dystrophic condition improves both histological features of muscles and cardiac function, suggesting that prevention of necroptosis is susceptible to providing multiorgan beneficial effects for DMD.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Cães , Camundongos , Ratos , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
2.
Sci Transl Med ; 15(685): eadd5275, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857434

RESUMO

Duchenne muscular dystrophy (DMD) is a severe and progressive myopathy leading to motor and cardiorespiratory impairment. We analyzed samples from patients with DMD and a preclinical rat model of severe DMD and determined that compromised repair capacity of muscle stem cells in DMD is associated with early and progressive muscle stem cell senescence. We also found that extraocular muscles (EOMs), which are spared by the disease in patients, contain muscle stem cells with long-lasting regenerative potential. Using single-cell transcriptomics analysis of muscles from a rat model of DMD, we identified the gene encoding thyroid-stimulating hormone receptor (Tshr) as highly expressed in EOM stem cells. Further, TSHR activity was involved in preventing senescence. Forskolin, which activates signaling downstream of TSHR, was found to reduce senescence of skeletal muscle stem cells, increase stem cell regenerative potential, and promote myogenesis, thereby improving muscle function in DMD rats. These findings indicate that stimulation of adenylyl cyclase leads to muscle repair in DMD, potentially providing a therapeutic approach for patients with the disease.


Assuntos
Distrofia Muscular de Duchenne , Receptores da Tireotropina , Animais , Ratos , Receptores Acoplados a Proteínas G , Fibras Musculares Esqueléticas , Células-Tronco , Regeneração , Tireotropina
3.
Mol Metab ; 69: 101677, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693621

RESUMO

OBJECTIVE: Mitochondria fuel most animal cells with ATP, ensuring proper energetic metabolism of organs. Early and extensive mitochondrial dysfunction often leads to severe disorders through multiorgan failure. Hacd2 gene encodes an enzyme involved in very long chain fatty acid (C ≥ 18) synthesis, yet its roles in vivo remain poorly understood. Since mitochondria function relies on specific properties of their membranes conferred by a particular phospholipid composition, we investigated if Hacd2 gene participates to mitochondrial integrity. METHODS: We generated two mouse models, the first one leading to a partial knockdown of Hacd2 expression and the second one, to a complete knockout of Hacd2 expression. We performed an in-depth analysis of the associated phenotypes, from whole organism to molecular scale. RESULTS: Thanks to these models, we show that Hacd2 displays an early and broad expression, and that its deficiency in mice is lethal. Specifically, partial knockdown of Hacd2 expression leads to death within one to four weeks after birth, from a sudden growth arrest followed by cachexia and lethargy. The total knockout of Hacd2 is even more severe, characterized by embryonic lethality around E9.5 following developmental arrest and pronounced cardiovascular malformations. In-depth mechanistic analysis revealed that Hacd2 deficiency causes altered mitochondrial efficiency and ultrastructure, as well as accumulation of oxidized cardiolipin. CONCLUSIONS: Altogether, these data indicate that the Hacd2 gene is essential for energetic metabolism during embryonic and postnatal development, acting through the control of proper mitochondrial organization and function.


Assuntos
Mitocôndrias , Doenças Mitocondriais , Animais , Camundongos , Cardiolipinas , Ácidos Graxos não Esterificados/metabolismo , Hidroliases/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Fosfolipídeos/metabolismo
4.
Acta Neuropathol Commun ; 10(1): 60, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468843

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by mutations in the Dystrophin gene and for which there is currently no cure. To bridge the gap between preclinical and therapeutic evaluation studies, we have generated a rat model for DMD that carries an exon 52 deletion (R-DMDdel52) causing a complete lack of dystrophin protein. Here we show that R-DMDdel52 animals recapitulated human DMD pathophysiological trajectory more faithfully than the mdx mouse model. We report that R-DMDdel52 rats displayed progressive and severe skeletal muscle loss associated with fibrotic deposition, fat infiltration and fibre type switch. Early fibrosis was also apparent in the cardiac muscle. These histological modifications led to severe muscle, respiratory and cardiac functional impairments leading to premature death around 1 year. Moreover, DMD muscle exhibited systemic inflammation with a mixed M1/M2 phenotype. A comparative single cell RNAseq analysis of the diaphragm muscle was performed, revealing cellular populations alteration and molecular modifications in all muscle cell types. We show that DMD fibroadipogenic progenitors produced elevated levels of cartilage oligomeric matrix protein, a glycoprotein responsible for modulating homeostasis of extracellular matrix, and whose increased concentration correlated with muscle fibrosis both in R-DMDdel52 rats and human patients. Fibrosis is a component of tissue remodelling impacting the whole musculature of DMD patients, at the tissue level but most importantly at the functional level. We therefore propose that this specific biomarker can optimize the prognostic monitoring of functional improvement of patients included in clinical trials.


Assuntos
Distrofia Muscular de Duchenne , Animais , Biomarcadores , Proteína de Matriz Oligomérica de Cartilagem/uso terapêutico , Distrofina/metabolismo , Fibrose , Humanos , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/terapia , Ratos
5.
Dis Model Mech ; 15(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35244154

RESUMO

Mutations in DNM2 cause autosomal dominant centronuclear myopathy (ADCNM), a rare disease characterized by skeletal muscle weakness and structural anomalies of the myofibres, including nuclear centralization and mitochondrial mispositioning. Following the clinical report of a Border Collie male with exercise intolerance and histopathological hallmarks of CNM on the muscle biopsy, we identified the c.1393C>T (R465W) mutation in DNM2, corresponding to the most common ADCNM mutation in humans. In order to establish a large animal model for longitudinal and preclinical studies on the muscle disorder, we collected sperm samples from the Border Collie male and generated a dog cohort for subsequent clinical, genetic and histological investigations. Four of the five offspring carried the DNM2 mutation and showed muscle atrophy and a mildly impaired gait. Morphological examinations of transverse muscle sections revealed CNM-typical fibres with centralized nuclei and remodelling of the mitochondrial network. Overall, the DNM2-CNM dog represents a faithful animal model for the human disorder, allows the investigation of ADCNM disease progression, and constitutes a valuable complementary tool to validate innovative therapies established in mice.


Assuntos
Dinamina II , Miopatias Congênitas Estruturais , Animais , Cães , Dinamina II/genética , Humanos , Masculino , Camundongos , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Mutação/genética , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia
6.
Bio Protoc ; 11(20): e4201, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34761073

RESUMO

The efficient ATP production in mitochondria relies on the highly specific organization of its double membrane. Notably, the inner mitochondrial membrane (IMM) displays a massive surface extension through its folding into cristae, along which concentrate respiratory complexes and oligomers of the ATP synthase. Evidence has accumulated to highlight the importance of a specific phospholipid composition of the IMM to support mitochondrial oxidative phosphorylation. Contribution of specific phospholipids to mitochondrial ATP production is classically studied by modulating the activity of enzymes involved in their synthesis, but the interconnection of phospholipid synthesis pathways often impedes the determination of the precise role of each phospholipid. Here, we describe a protocol to specifically enrich mitochondrial membranes with cardiolipin or phosphatidylcholine, as well as a fluorescence-based method to quantify phospholipid enrichment. This method, based on the fusion of lipid vesicles with isolated mitochondria, may further allow a precise evaluation of phospholipid contribution to mitochondrial functions.

7.
Sci Adv ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523852

RESUMO

Unbalanced energy partitioning participates in the rise of obesity, a major public health concern in many countries. Increasing basal energy expenditure has been proposed as a strategy to fight obesity yet raises efficiency and safety concerns. Here, we show that mice deficient for a muscle-specific enzyme of very-long-chain fatty acid synthesis display increased basal energy expenditure and protection against high-fat diet-induced obesity. Mechanistically, muscle-specific modulation of the very-long-chain fatty acid pathway was associated with a reduced content of the inner mitochondrial membrane phospholipid cardiolipin and a blunted coupling efficiency between the respiratory chain and adenosine 5'-triphosphate (ATP) synthase, which was restored by cardiolipin enrichment. Our study reveals that selective increase of lipid oxidative capacities in skeletal muscle, through the cardiolipin-dependent lowering of mitochondrial ATP production, provides an effective option against obesity at the whole-body level.

8.
One Health ; 10: 100164, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32904469

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China, in 2019, is responsible for the COVID-19 pandemic. It is now accepted that the wild fauna, probably bats, constitute the initial reservoir of the virus, but little is known about the role pets can play in the spread of the disease in human communities, knowing the ability of SARS-CoV-2 to infect some domestic animals. In this cross-sectional study, we tested the antibody response in a cluster of 21 domestic pets (9 cats and 12 dogs) living in close contact with their owners (belonging to a veterinary community of 20 students) in which two students tested positive for COVID-19 and several others (n = 11/18) consecutively showed clinical signs (fever, cough, anosmia, etc.) compatible with COVID-19 infection. Although a few pets presented many clinical signs indicative for a coronavirus infection, no antibodies against SARS-CoV-2 were detectable in their blood one month after the index case was reported, using an immunoprecipitation assay. These original data can serve a better evaluation of the host range of SARS-CoV-2 in natural environment exposure conditions.

9.
Dis Model Mech ; 13(11)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32994313

RESUMO

Skeletal muscle development and regeneration are tightly regulated processes. How the intracellular organization of muscle fibers is achieved during these steps is unclear. Here, we focus on the cellular and physiological roles of amphiphysin 2 (BIN1), a membrane remodeling protein mutated in both congenital and adult centronuclear myopathies (CNM), that is ubiquitously expressed and has skeletal muscle-specific isoforms. We created and characterized constitutive muscle-specific and inducible Bin1 homozygous and heterozygous knockout mice targeting either ubiquitous or muscle-specific isoforms. Constitutive Bin1-deficient mice died at birth from lack of feeding due to a skeletal muscle defect. T-tubules and other organelles were misplaced and altered, supporting a general early role for BIN1 in intracellular organization, in addition to membrane remodeling. Although restricted deletion of Bin1 in unchallenged adult muscles had no impact, the forced switch from the muscle-specific isoforms to the ubiquitous isoforms through deletion of the in-frame muscle-specific exon delayed muscle regeneration. Thus, ubiquitous BIN1 function is necessary for muscle development and function, whereas its muscle-specific isoforms fine tune muscle regeneration in adulthood, supporting that BIN1 CNM with congenital onset are due to developmental defects, whereas later onset may be due to regeneration defects.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Regeneração/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Recém-Nascidos , Éxons/genética , Comportamento Alimentar , Homozigoto , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/ultraestrutura , Especificidade de Órgãos , Isoformas de Proteínas/metabolismo , Deleção de Sequência , Análise de Sobrevida
10.
Skelet Muscle ; 10(1): 23, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32767978

RESUMO

BACKGROUND: Canine models of Duchenne muscular dystrophy (DMD) are a valuable tool to evaluate potential therapies because they faithfully reproduce the human disease. Several cases of dystrophinopathies have been described in canines, but the Golden Retriever muscular dystrophy (GRMD) model remains the most used in preclinical studies. Here, we report a new spontaneous dystrophinopathy in a Labrador Retriever strain, named Labrador Retriever muscular dystrophy (LRMD). METHODS: A colony of LRMD dogs was established from spontaneous cases. Fourteen LRMD dogs were followed-up and compared to the GRMD standard using several functional tests. The disease causing mutation was studied by several molecular techniques and identified using RNA-sequencing. RESULTS: The main clinical features of the GRMD disease were found in LRMD dogs; the functional tests provided data roughly overlapping with those measured in GRMD dogs, with similar inter-individual heterogeneity. The LRMD causal mutation was shown to be a 2.2-Mb inversion disrupting the DMD gene within intron 20 and involving the TMEM47 gene. In skeletal muscle, the Dp71 isoform was ectopically expressed, probably as a consequence of the mutation. We found no evidence of polymorphism in either of the two described modifier genes LTBP4 and Jagged1. No differences were found in Pitpna mRNA expression levels that would explain the inter-individual variability. CONCLUSIONS: This study provides a full comparative description of a new spontaneous canine model of dystrophinopathy, found to be phenotypically equivalent to the GRMD model. We report a novel large DNA mutation within the DMD gene and provide evidence that LRMD is a relevant model to pinpoint additional DMD modifier genes.


Assuntos
Modelos Animais de Doenças , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Fenótipo , Animais , Cães , Genes Modificadores , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Mutação
11.
Anim Genet ; 51(4): 631-633, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32452546

RESUMO

In dogs and cats, unusual coat colour phenotypes may result from various phenomena, including chimerism. In the domestic cat, the tortoiseshell coat colour that combines red and non-red hairs is the most obvious way to identify chimeras in males. Several cases of tortoiseshell males have been reported, some of which were diagnosed as chimeras without any molecular confirmation. Here, we report the case of a female feline chimera identified thanks to its coat colour and confirmed through DNA profiling and a coat colour test. We ruled out the hypothesis of mosaicism and aneuploidy. All the data were consistent with a natural case of female chimerism.


Assuntos
Gatos/genética , Quimerismo/veterinária , Cabelo/fisiologia , Animais , Cor , Impressões Digitais de DNA/veterinária , Feminino , Pigmentação/genética
12.
Sci Rep ; 10(1): 6520, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300138

RESUMO

The domestic dog represents an ideal model for identifying susceptibility genes, many of which are shared with humans. In this study, we investigated the genetic contribution to individual differences in 40 clinically important measurements by a genome-wide association study (GWAS) in a multinational cohort of 472 healthy dogs from eight breeds. Meta-analysis using the binary effects model after breed-specific GWAS, identified 13 genome-wide significant associations, three of them showed experimental-wide significant associations. We detected a signal at chromosome 13 for the serum concentration of alanine aminotransferase (ALT) in which we detected four breed-specific signals. A large proportion of the variance of ALT (18.1-47.7%) was explained by this locus. Similarly, a single SNP was also responsible for a large proportion of the variance (6.8-78.4%) for other measurements such as fructosamine, stress during physical exam, glucose, and morphometric measurements. The genetic contribution of single variant was much larger than in humans. These findings illustrate the importance of performing meta-analysis after breed-specific GWAS to reveal the genetic contribution to individual differences in clinically important measurements, which would lead to improvement of veterinary medicine.


Assuntos
Alanina Transaminase/genética , Frutosamina/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Animais , Cruzamento , Cromossomos/genética , Doenças do Cão/genética , Doenças do Cão/patologia , Cães , Predisposição Genética para Doença , Humanos , Masculino , Fenótipo
13.
J Feline Med Surg ; 22(12): 1103-1113, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32067556

RESUMO

OBJECTIVES: Polydactyly has been described in two breeds of domestic cats (Maine Coon and Pixie Bob) and in some outbred domestic cats (eg, Hemingway cats). In most cases, feline polydactyly is a non-syndromic preaxial polydactyly. Three variants located in a regulatory sequence involved in limb development, named ZRS (zone of polarising activity regulatory sequence), have been identified to be responsible for feline polydactyly. These variants have been found in outbred domestic cats in the UK (UK1 and UK2 variants) and in Hemingway cats in the USA (Hw variant). The aim of this study was to characterise the genetic features of polydactyly in Maine Coon cats. METHODS: Genotyping assay was used to identify the variant(s) segregating in a cohort of 75 polydactyl and non-polydactyl Maine Coon cats from different breeding lines from Europe, Canada and the USA. The authors performed a segregation analysis to identify the inheritance pattern of polydactyly in this cohort and analysed the population structure. RESULTS: The Hw allele was identified in a subset of polydactyl cats. Sequencing of two regulatory sequences involved in limb development did not reveal any other variant in polydactyl cats lacking the Hw allele. Additionally, genotype-phenotype and segregation analyses revealed the peculiar inheritance pattern of polydactyly in Maine Coon cats. The population structure analysis demonstrated a genetic distinction between Hw and Hw-free polydactyl cats. CONCLUSIONS AND RELEVANCE: Polydactyly in Maine Coon cats is inherited as an autosomal dominant trait with incomplete penetrance and variable expressivity, and this trait is characterised by genetic heterogeneity in the Maine Coon breed. Maine Coon breeders should be aware of this situation and adapt their breeding practices accordingly.


Assuntos
Gatos/anormalidades , Heterogeneidade Genética , Polidactilia/veterinária , Animais , Canadá , Europa (Continente) , Feminino , Masculino , Polidactilia/genética , Estados Unidos
14.
J Neuromuscul Dis ; 6(4): 421-451, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31450509

RESUMO

Dogs have long been used as a biomedical model system and in particular as a preclinical proof of concept for innovative therapies before translation to humans. A recent example of the utility of this animal model is the promising myotubularin gene delivery in boys affected by X-linked centronuclear myopathy after successful systemic, long-term efficient gene therapy in Labrador retrievers. Mostly, this is due to unique features that make dogs an optimal system. The continuous emergence of spontaneous inherited disorders enables the identification of reliable complementary molecular models for human neuromuscular disorders (NMDs). Dogs' characteristics including size, lifespan and unprecedented medical care level allow a comprehensive longitudinal description of diseases. Moreover, the highly similar pathogenic mechanisms with human patients yield to translational robustness. Finally, interindividual phenotypic heterogeneity between dogs helps identifying modifiers and anticipates precision medicine issues.This review article summarizes the present list of molecularly characterized dog models for NMDs and provides an exhaustive list of the clinical and paraclinical assays that have been developed. This toolbox offers scientists a sensitive and reliable system to thoroughly evaluate neuromuscular function, as well as efficiency and safety of innovative therapies targeting these NMDs. This review also contextualizes the model by highlighting its unique genetic value, shaped by the long-term coevolution of humans and domesticated dogs. Because the dog is one of the most protected research animal models, there is considerable opposition to include it in preclinical projects, posing a threat to the use of this model. We thus discuss ethical issues, emphasizing that unlike many other models, the dog also benefits from its contribution to comparative biomedical research with a drastic reduction in the prevalence of morbid alleles in the breeding stock and an improvement in medical care.


Assuntos
Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Proteínas Tirosina Fosfatases não Receptoras/genética , Animais , Modelos Animais de Doenças , Cães , Humanos , Estudos Longitudinais , Mutação/genética , Miopatias Congênitas Estruturais/diagnóstico , Doenças Raras/genética , Doenças Raras/terapia
15.
Vet Med Sci ; 5(2): 112-117, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30741495

RESUMO

Ichthyoses represent a heterogeneous group of hereditary cornification disorders characterized by generalized scaling of the skin. An autosomal recessive congenital ichthyosis (ARCI) has been described in American Bulldogs and is caused by a variant in the NIPAL4 gene encoding for the ICHTHYIN protein. So far, this variant has not been described in other breeds. A 1.5-year-old female pedigreed American Bully was referred for generalized scaling and bad coat quality since adoption at 8 weeks of age. Clinical examination, cytological and histopathological examination, and DNA testing were performed. Clinical examination revealed a generalized scaling; cytological evaluation using impression with acetate tapes showed a secondary Malassezia dermatitis. Histopathological examination revealed a moderate to marked, diffuse, compact orthokeratotic hyperkeratosis with the formation of large scales. Few Malassezia were observed in the stratum corneum associated with minimal mixed perivascular inflammation and moderate epidermal hyperplasia. DNA testing of the dog revealed that he carries two defective alleles of the NIPAL4 gene previously described in the American Bulldog. We performed a commercially available breed detection test which, although not specifically testing for "American Bully" signatures, revealed a high probability of American Bulldog DNA signature within the past three generations. Topical treatment using a combination of keratolytic and keratomodulator shampoo, emollient and moisturizers spray and antimicrobial wipes achieved a marked clinical improvement after only 1 month. Continuous topical treatment was necessary to maintain clinical improvement. To the authors' knowledge, this is the first description of the deleterious NIPAL4 variant in an American Bully as well as the first description of clinical management and follow-up of ARCI in this breed.


Assuntos
Sequência de Bases , Doenças do Cão/genética , Eritrodermia Ictiosiforme Congênita/veterinária , Receptores de Superfície Celular/genética , Deleção de Sequência , Animais , Doenças do Cão/patologia , Cães , Epiderme/patologia , Feminino , Genes Recessivos , Eritrodermia Ictiosiforme Congênita/genética , Eritrodermia Ictiosiforme Congênita/patologia , Linhagem , Receptores de Superfície Celular/metabolismo
16.
Vet Clin Pathol ; 47(4): 582-588, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30556915

RESUMO

BACKGROUND: Markers of lipid and glucose metabolism are used in both clinical practice and research. Detection of abnormal laboratory results often relies on species-specific reference intervals, but interbreed variation can also affect data interpretation. OBJECTIVES: The purpose of the present study was to compare concentrations of selected biochemical variables among different dog breeds. METHODS: We analyzed a database containing information on biochemical variables from 534 dogs belonging to nine different breeds. All dogs were confirmed to be healthy based on history, physical examination, and ancillary tests. Concentrations of glucose, fructosamine, insulin, cholesterol, triglycerides, fatty acids, and C-reactive protein were compared using the nonparametric Kruskal-Wallis and Dunn's tests. RESULTS: All variables tested showed significant interbreed differences, although all breeds remained within the previously established RIs for dogs. Fructosamine, insulin, and cholesterol showed a wide interbreed variation that could affect the interpretation of results. CONCLUSIONS: Breed is an important factor to consider when assessing energy metabolism in dogs, especially for markers like fructosamine, insulin, and cholesterol, which vary considerably among breeds.


Assuntos
Cães/sangue , Glucose/metabolismo , Metabolismo dos Lipídeos , Animais , Biomarcadores/sangue , Glicemia/análise , Proteína C-Reativa/análise , Colesterol/sangue , Cães/metabolismo , Ácidos Graxos não Esterificados/sangue , Feminino , Frutosamina/sangue , Insulina/sangue , Masculino , Valores de Referência , Especificidade da Espécie , Triglicerídeos/sangue
17.
Nat Commun ; 9(1): 4107, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279414

RESUMO

The original version of this article contained an error in Fig. 3. In panel c, the labels 'mdx' and 'mdx Ripk3-/-' were inadvertently inverted. This has now been corrected in the PDF and HTML versions of the Article.

18.
BMC Vet Res ; 14(1): 306, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305106

RESUMO

BACKGROUND: Low-grade alimentary lymphoma (LGAL) is characterised by the infiltration of neoplastic T-lymphocytes, typically in the small intestine. The incidence of LGAL has increased over the last ten years and it is now the most frequent digestive neoplasia in cats and comprises 60 to 75% of gastrointestinal lymphoma cases. Given that LGAL shares common clinical, paraclinical and ultrasonographic features with inflammatory bowel diseases, establishing a diagnosis is challenging. A review was designed to summarise current knowledge of the pathogenesis, diagnosis, prognosis and treatment of feline LGAL. Electronic searches of PubMed and Science Direct were carried out without date or language restrictions. RESULTS: A total of 176 peer-reviewed documents were identified and most of which were published in the last twenty years. 130 studies were found from the veterinary literature and 46 from the human medicine literature. Heterogeneity of study designs and outcome measures made meta-analysis inappropriate. The pathophysiology of feline LGAL still needs to be elucidated, not least the putative roles of infectious agents, environmental factors as well as genetic events. The most common therapeutic strategy is combination treatment with prednisolone and chlorambucil, and prolonged remission can often be achieved. Developments in immunohistochemical analysis and clonality testing have improved the confidence of clinicians in obtaining a correct diagnosis between LGAL and IBD. The condition shares similarities with some diseases in humans, especially human indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. CONCLUSIONS: The pathophysiology of feline LGAL still needs to be elucidated and prospective studies as well as standardisation of therapeutic strategies are needed. A combination of conventional histopathology and immunohistochemistry remains the current gold-standard test, but clinicians should be cautious about reclassifying cats previously diagnosed with IBD to lymphoma on the basis of clonality testing. Importantly, feline LGAL could be considered to be a potential animal model for indolent digestive T-cell lymphoproliferative disorder, a rare condition in human medicine.


Assuntos
Doenças do Gato/patologia , Modelos Animais de Doenças , Linfoma não Hodgkin/veterinária , Linfoma de Células T Periférico , Animais , Doenças do Gato/diagnóstico , Doenças do Gato/terapia , Gatos , Sistema Digestório/patologia , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/veterinária , Linfoma não Hodgkin/diagnóstico , Linfoma não Hodgkin/patologia , Linfoma não Hodgkin/terapia
19.
Nat Commun ; 9(1): 3655, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194302

RESUMO

Duchenne muscular dystrophy (DMD) is a severe degenerative disorder caused by mutations in the dystrophin gene. Dystrophin-deficient muscles are characterised by progressive myofibre necrosis in which inflammation plays a deleterious role. However, the molecular mechanisms underlying inflammation-induced necrosis in muscle cells are unknown. Here we show that necroptosis is a mechanism underlying myofibre death in dystrophin-deficient muscle. RIPK1, RIPK3 and MLKL are upregulated in dystrophic mouse myofibres. In human DMD samples, there is strong immunoreactivity to RIPK3 and phospho-MLKL in myofibres. In vitro, TNFα can elicit necroptosis in C2C12 myoblasts, and RIPK3 overexpression sensitises myoblasts to undergo TNF-induced death. Furthermore, genetic ablation of Ripk3 in mdx mice reduces myofibre degeneration, inflammatory infiltrate, and muscle fibrosis, and eventually improves muscle function. These findings provide the first evidence of necroptotic cell death in a disease affecting skeletal muscle and identify RIPK3 as a key player in the degenerative process in dystrophin-deficient muscles.


Assuntos
Distrofina/deficiência , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Humanos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Mioblastos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
20.
Methods Mol Biol ; 1668: 39-60, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28842901

RESUMO

Lipids represent ∼10% of the cell dry mass and play essential roles in membrane composition and physical properties, energy storage, and signaling pathways. In the developing or the regenerating skeletal muscle, modifications in the content or the flipping between leaflets of membrane lipid components can modulate the fusion capacity of myoblasts, thus constituting one of the regulatory mechanisms underlying myofiber growth. Recently, few genes controlling these qualitative and quantitative modifications have started to be unraveled. The precise functional characterization of these genes requires both qualitative and quantitative evaluations of a global lipid profile. Here, we describe a lipidomic protocol using mass spectrometry, allowing assessing the content of fatty acids, glycerophospholipids, and cholesterol in the routinely used C2C12 mouse myoblast cell line, or in primary cultures of mouse myoblasts.


Assuntos
Colesterol/análise , Ácidos Graxos/análise , Glicerofosfolipídeos/análise , Lipídeos de Membrana/análise , Mioblastos/citologia , Animais , Fusão Celular , Linhagem Celular , Colesterol/metabolismo , Cromatografia Líquida , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glicerofosfolipídeos/metabolismo , Lipídeos de Membrana/metabolismo , Camundongos , Cultura Primária de Células , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA