Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(3): 101287, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39104574

RESUMO

Therapeutic innovation to address sickle cell disease (SCD) is at a historical apex, characterized by a drug discovery, development, and commercialization landscape that includes potentially curative gene therapies. Given the wide geographic distribution of SCD, with a major presence in Africa, it is imperative that new medicines are designed to meet the specific needs of persons with SCD everywhere. Target product profiles (TPPs) detail the desired attributes of new medicines and serve as a guide for drug developers. To support research efforts for curative treatments for SCD, we mobilized a large multi-disciplinary expert group to generate consensus-driven TPPs for ex vivo and in vivo SCD gene therapies, utilizing a modified Delphi methodology supplemented with virtual workshops. The main findings are TPPs that describe 20 minimal and optimal criteria for novel gene therapy products in categories of scope (3 criteria), performance/safety (11 criteria), manufacturing (4 criteria), and administration (2 criteria). TPPs for ex vivo and in vivo products differed in some performance/safety criteria and all criteria pertaining to manufacturing and administration. These outputs will ideally support development of durable treatments that are safe, efficacious, and practical for persons with SCD in global settings.

2.
Ann Am Thorac Soc ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189784

RESUMO

RATIONALE: Sickle cell disease (SCD) is a monogenetic condition with recurring vaso-occlusive events causing lifelong pulmonary morbidity and mortality. There is increasing access to curative therapies, such as hematopoietic cell transplant (HCT), for people living with SCD. However, more information on pulmonary function in adults with SCD after HCT is needed in order to best guide decisions for HCT and post-HCT care. OBJECTIVE: To test the hypothesis that forced expiratory volume in one second (FEV1), and other pulmonary function testing (PFT) parameters, remain stable three years post-HCT. METHODS: People living with SCD undergoing non-myeloablative HCT in a prospective cohort at the NIH Clinical Center from 2004 - 2019 were evaluated for enrollment. Global Lung Function Initiative reference equations and descriptive statistics were calculated prior to HCT and annually for three years. Six-minute walk distance (6MWD) testing was performed. Generalized estimating equations (GEE) were employed to evaluate inter-individual changes in PFT parameters and 6MWD. RESULTS: Of 97 SCD patients undergoing HCT, 41 (42%) were female with median (25th, 75th percentile) age 31.8 (24.8, 38.0) years. Each year of measurement included the following numbers of subjects available for analysis with PFTs: baseline (97), year 1 (91), year 2 (72), year 3 (55); and the following numbers of subjects available for analysis with 6MWD: baseline (79), year 1 (73), year 2 (57), year 3 (41). Pre-HCT FEV1 was median (25th, 75th percentile) 68.3% (61.3%, 80.3%) and 69.2% (60.8%, 77.7%) three years post-HCT; pre-HCT DLCO 60.5% (53.0%, 66.3%) and 64.6% (55.1%, 73.4%) three years post-HCT. GEE estimated that DLCO %-predicted increased significantly 3.7% (95% confidence interval, 1.0%, 6.3%) and the 6MWD significantly increased by 25.9 (6.6, 45.2) meters three years post-HCT, while there was no significant change in %-predicted FEV1 or FVC compared to pre-HCT. CONCLUSIONS: Overall, PFTs remained stable and there was an improvement in DLCO and 6MWD in this predominantly adult cohort undergoing non-myeloablative HCT for SCD. Allogeneic HCT for SCD may cease the cycle of vaso-occlusive pulmonary injury and prevent continued damage. Multicenter studies are needed to evaluate the long-term lung health effects of HCT for SCD in adults and children.

3.
Mol Ther ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39086133

RESUMO

Sickle cell disease (SCD) is a common, severe genetic blood disorder. Current pharmacotherapies are partially effective and allogeneic hematopoietic stem cell transplantation (HSCT) is associated with immune toxicities. Genome editing of patient hematopoietic stem cells (HSCs) to reactivate fetal hemoglobin (HbF) in erythroid progeny offers an alternative potentially curative approach to treat SCD. Although the FDA released guidelines for evaluating genome editing risks, it remains unclear how best to approach pre-clinical assessment of genome-edited cell products. Here we describe rigorous pre-clinical development of a therapeutic γ-globin gene promoter editing strategy that supported an investigational new drug (IND) application cleared by the FDA. We compared γ-globin promoter and BCL11A enhancer targets, identified a potent HbF-inducing lead candidate, and tested our approach in mobilized CD34+ HSPCs from SCD patients. We observed efficient editing, HbF induction to predicted therapeutic levels, and reduced sickling. With single-cell analyses, we defined the heterogeneity of HbF induction and HBG1/HBG2 transcription. With CHANGE-seq for sensitive and unbiased off-target discovery followed by targeted sequencing, we did not detect off-target activity in edited HSPCs. Our study provides a blueprint for translating new ex vivo HSC genome editing strategies towards clinical trials for treating SCD and other blood disorders.

4.
Expert Rev Hematol ; 17(9): 555-566, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39076056

RESUMO

INTRODUCTION: Sickle cell disease (SCD) is a monogenic disorder that exerts several detrimental health effects on those affected, ultimately resulting in significant morbidity and early mortality. There are millions of individuals globally impacted by this disease. Research in gene therapy has been growing significantly over the past decade, now with two FDA approved products, aiming to find another cure for this complex disease. AREAS COVERED: This perspective article aims to provide a clinician's insight into the current landscape of gene therapies, exploring the novel approaches, clinical advances, and potential impact on the management and prognosis of SCD. A comprehensive literature search encompassing databases such as PubMed, Web of Science and Google Scholar was employed. The search covered literature published from 1980 to 2024, focusing on SCD and curative therapy. EXPERT OPINION: After careful evaluation of the risks and benefits associated with the use of gene therapy for affected patients, the need for a cure outweighs the risks associated with treatment in most cases of SCD. With advances in current technologies, gene therapies can increase access to cures for patients with SCD.


Assuntos
Anemia Falciforme , Terapia Genética , Anemia Falciforme/terapia , Anemia Falciforme/genética , Humanos , Terapia Genética/métodos
5.
Cytotherapy ; 26(6): 641-648, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38506770

RESUMO

Ex vivo resting culture is a standard procedure following genome editing in hematopoietic stem and progenitor cells (HSPCs). However, prolonged culture may critically affect cell viability and stem cell function. We investigated whether varying durations of culture resting times impact the engraftment efficiency of human CD34+ HSPCs edited at the BCL11A enhancer, a key regulator in the expression of fetal hemoglobin. We employed electroporation to introduce CRISPR-Cas9 components for BCL11A enhancer editing and compared outcomes with nonelectroporated (NEP) and electroporated-only (EP) control groups. Post-electroporation, we monitored cell viability, death rates, and the frequency of enriched hematopoietic stem cell (HSC) fractions (CD34+CD90+CD45RA- cells) over a 48-hour period. Our findings reveal that while the NEP group showed an increase in cell numbers 24 hours post-electroporation, both EP and BCL11A-edited groups experienced significant cell loss. Although CD34+ cell frequency remained high in all groups for up to 48 hours post-electroporation, the frequency of the HSC-enriched fraction was significantly lower in the EP and edited groups compared to the NEP group. In NBSGW xenograft mouse models, both conditioned with busulfan and nonconditioned, we found that immediate transplantation post-electroporation led to enhanced engraftment without compromising editing efficiency. Human glycophorin A+ (GPA+) red blood cells (RBCs) sorted from bone marrow of all BCL11A edited mice exhibited similar levels of γ-globin expression, regardless of infusion time. Our findings underscore the critical importance of optimizing the culture duration between genome editing and transplantation. Minimizing this interval may significantly enhance engraftment success and minimize cell loss without compromising editing efficiency. These insights offer a pathway to improve the success rates of genome editing in HSPCs, particularly for conditions like sickle cell disease.


Assuntos
Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Animais , Humanos , Edição de Genes/métodos , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Transplante de Células-Tronco Hematopoéticas/métodos , Sistemas CRISPR-Cas/genética , Eletroporação/métodos , Xenoenxertos , Sobrevivência Celular , Antígenos CD34/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
7.
Blood Adv ; 8(7): 1806-1816, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38181784

RESUMO

ABSTRACT: Stable, mixed-donor-recipient chimerism after allogeneic hematopoietic stem cell transplantation (HSCT) for patients with sickle cell disease (SCD) is sufficient for phenotypic disease reversal, and results from differences in donor/recipient-red blood cell (RBC) survival. Understanding variability and predictors of RBC survival among patients with SCD before and after HSCT is critical for gene therapy research which seeks to generate sufficient corrected hemoglobin to reduce polymerization thereby overcoming the red cell pathology of SCD. This study used biotin labeling of RBCs to determine the lifespan of RBCs in patients with SCD compared with patients who have successfully undergone curative HSCT, participants with sickle cell trait (HbAS), and healthy (HbAA) donors. Twenty participants were included in the analysis (SCD pre-HSCT: N = 6, SCD post-HSCT: N = 5, HbAS: N = 6, and HbAA: N = 3). The average RBC lifespan was significantly shorter for participants with SCD pre-HSCT (64.1 days; range, 35-91) compared with those with SCD post-HSCT (113.4 days; range, 105-119), HbAS (126.0 days; range, 119-147), and HbAA (123.7 days; range, 91-147) (P<.001). RBC lifespan correlated with various hematologic parameters and strongly correlated with the average final fraction of sickled RBCs after deoxygenation (P<.001). No adverse events were attributable to the use of biotin and related procedures. Biotin labeling of RBCs is a safe and feasible methodology to evaluate RBC survival in patients with SCD before and after HSCT. Understanding differences in RBC survival may ultimately guide gene therapy protocols to determine hemoglobin composition required to reverse the SCD phenotype as it relates directly to RBC survival. This trial was registered at www.clinicaltrials.gov as #NCT04476277.


Assuntos
Anemia Falciforme , Transplante de Células-Tronco Hematopoéticas , Humanos , Anemia Falciforme/patologia , Biotina , Eritrócitos/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Hemoglobinas
8.
Hematology Am Soc Hematol Educ Program ; 2023(1): 542-547, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066927

RESUMO

Sickle cell disease (SCD) is potentially curable after allogeneic hematopoietic stem cell transplantation (HSCT) or autologous HSCT after ex vivo genetic modification. Autologous HSCT with gene therapy has the potential to overcome many of the limitations of allogeneic HSCT that include the lack of suitable donors, graft-versus-host disease, the need for immune suppression, and the potential for graft rejection. Significant progress in gene therapy for SCD has been made over the past several decades, now with a growing number of clinical trials investigating various gene addition and gene editing strategies. Available results from a small number of patients, some with relatively short follow-up, are promising as a potentially curative strategy, with current efforts focused on continuing to improve the efficacy, durability, and safety of gene therapies for the cure of SCD.


Assuntos
Anemia Falciforme , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Anemia Falciforme/genética , Anemia Falciforme/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Doença Enxerto-Hospedeiro/terapia , Transplante Autólogo , Terapia Genética/métodos
9.
J Endocr Soc ; 7(12): bvad134, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37953902

RESUMO

Purpose: To determine the rate and clinical characteristics associated with abnormal thyroid and adrenal function in recipients of nonmyeloablative hematopoietic cell transplantation (HCT) for sickle cell disease (SCD) and beta-thalassemia. Methods: We retrospectively reviewed patients who enrolled in 4 nonmyeloablative HCT regimens with alemtuzumab and total body irradiation (TBI). Baseline and annual post-HCT data were compared, which included age, sex, sickle phenotype, thyroid panel (total T3, free T4, thyroid stimulating hormone, antithyroid antibodies), cortisol level, ACTH stimulation testing, ferritin, medications, and other relevant medical history. Results: Among 43 patients in haploidentical transplant and 84 patients in the matched related donor protocols with mostly SCD, the rate of any thyroid disorder pre-HCT was 3.1% (all subclinical hypothyroidism) and post-HCT was 29% (10 hypothyroidism, 4 Grave's disease, and 22 subclinical hypothyroidism). Ninety-two (72%) patients had ferritin >1000 ng/dL, of which 33 patients (35.8%) had thyroid dysfunction. Iron overload was noted in 6 of 10 patients with hypothyroidism and 12 of 22 patients with subclinical hypothyroidism.Sixty-one percent were on narcotics for pain control. With respect to adrenal insufficiency (AI) pre-HCT, 2 patients were maintained on corticosteroids for underlying rheumatologic disorder and 8 had AI diagnosed during pre-HCT ACTH stimulation testing (total 10, 7.9%). Post-HCT, an additional 4 (3%) developed AI from corticosteroid use for acute graft vs host disease, Evans syndrome, or hemolytic anemia. Conclusion: Although iron overload was common in SCD, thyroid dysfunction pre-HCT related to excess iron was less common. Exposure to alemtuzumab or TBI increased the rates of thyroid dysfunction post-HCT. In contrast, AI was more common pre-HCT, but no risk factor was identified. AI post-HCT was infrequent and associated with corticosteroid use for HCT-related complications.

10.
Nat Commun ; 14(1): 6291, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828021

RESUMO

Hematopoietic stem cell (HSC) gene therapy has curative potential; however, its use is limited by the morbidity and mortality associated with current chemotherapy-based conditioning. Targeted conditioning using antibody-drug conjugates (ADC) holds promise for reduced toxicity in HSC gene therapy. Here we test the ability of an antibody-drug conjugate targeting CD117 (CD117-ADC) to enable engraftment in a non-human primate lentiviral gene therapy model of hemoglobinopathies. Following single-dose CD117-ADC, a >99% depletion of bone marrow CD34 + CD90 + CD45RA- cells without lymphocyte reduction is observed, which results are not inferior to multi-day myeloablative busulfan conditioning. CD117-ADC, similarly to busulfan, allows efficient engraftment, gene marking, and vector-derived fetal hemoglobin induction. Importantly, ADC treatment is associated with minimal toxicity, and CD117-ADC-conditioned animals maintain fertility. In contrast, busulfan treatment commonly causes severe toxicities and infertility in humans. Thus, the myeloablative capacity of single-dose CD117-ADC is sufficient for efficient engraftment of gene-modified HSCs while preserving fertility and reducing adverse effects related to toxicity in non-human primates. This targeted conditioning approach thus provides the proof-of-principle to improve risk-benefit ratio in a variety of HSC-based gene therapy products in humans.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunoconjugados , Animais , Bussulfano/farmacologia , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas , Imunoconjugados/farmacologia , Proteínas Proto-Oncogênicas c-kit/imunologia , Proteínas Proto-Oncogênicas c-kit/uso terapêutico , Macaca mulatta/imunologia
11.
Expert Rev Hematol ; 16(11): 879-903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37800996

RESUMO

INTRODUCTION: Hematopoietic stem cell transplant (HSCT) is the only readily available curative option for sickle cell disease (SCD). Cure rates following human leukocyte antigen (HLA)-matched related donor HSCT with myeloablative or non-myeloablative conditioning are >90%. Alternative donor sources, including haploidentical donor and autologous with gene therapy, expand donor options but are limited by inferior outcomes, limited data, and/or shorter follow-up and therefore remain experimental. AREAS COVERED: Outcomes are improving with time, with donor type and conditioning regimens having the greatest impact on long-term complications. Patients with stable donor engraftment do not experience SCD-related symptoms and have stabilization or improvement of end-organ pathology; however, the long-term effects of curative strategies remain to be fully established and have significant implications in a patient's decision to seek therapy. This review covers currently published literature on HSCT outcomes, including organ-specific outcomes implicated in SCD, as well as long-term effects. EXPERT OPINION: HSCT, both allogeneic and autologous gene therapy, in the SCD population reverses the sickle phenotype, prevents further organ damage, can resolve prior organ dysfunction in both pediatric and adult patients. Data support greater success with HSCT at a younger age, thus, curative therapies should be discussed early in the patient's life.


Assuntos
Anemia Falciforme , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Adulto , Humanos , Criança , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Anemia Falciforme/complicações , Transplante Homólogo , Doadores de Tecidos , Condicionamento Pré-Transplante/efeitos adversos , Doença Enxerto-Hospedeiro/etiologia
13.
Neuropsychol Rehabil ; : 1-20, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540620

RESUMO

Sickle cell disease (SCD) is associated with increased risk of neurocognitive deficits. However, whether functioning changes following nonmyeloablative hematopoietic stem cell transplant (HSCT) remains unclear. This study aimed to examine changes in neuropsychological functioning pre- to post-transplant among patients with SCD and compare patients and siblings. Adults with SCD (n = 47; Mage = 31.8 ± 8.9) and their sibling stem cell donors (n = 22; Mage = 30.5± 9.2) enrolled on a nonmyeloablative HCST protocol completed cognitive and patient-reported outcome assessments at baseline and 12 months post-transplant. Path analyses were used to assess associations between pre-transplant variables and sibling/patient group status and post-transplant function. Mean patient cognitive scores were average at both timepoints. Patient processing speed and somatic complaints improved from baseline to follow-up. Baseline performance predicted follow-up performance across cognitive variables; patient/sibling status predicted follow-up performance on some processing speed measures. Results suggest that patients with SCD demonstrate slower processing speed than siblings. Processing speed increased pre- to post-HSCT among patients and siblings, and on some measures patients demonstrated greater improvement. Thus, HSCT may improve processing speed in patients, although further confirmation is needed. Findings provide promising evidence that neurocognitive functioning remains stable without detrimental effects from pre- to 12-months post nonmyeloablative HSCT in individuals with SCD.

14.
Nat Genet ; 55(7): 1210-1220, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37400614

RESUMO

Inducing fetal hemoglobin (HbF) in red blood cells can alleviate ß-thalassemia and sickle cell disease. We compared five strategies in CD34+ hematopoietic stem and progenitor cells, using either Cas9 nuclease or adenine base editors. The most potent modification was adenine base editor generation of γ-globin -175A>G. Homozygous -175A>G edited erythroid colonies expressed 81 ± 7% HbF versus 17 ± 11% in unedited controls, whereas HbF levels were lower and more variable for two Cas9 strategies targeting a BCL11A binding motif in the γ-globin promoter or a BCL11A erythroid enhancer. The -175A>G base edit also induced HbF more potently than a Cas9 approach in red blood cells generated after transplantation of CD34+ hematopoietic stem and progenitor cells into mice. Our data suggest a strategy for potent, uniform induction of HbF and provide insights into γ-globin gene regulation. More generally, we demonstrate that diverse indels generated by Cas9 can cause unexpected phenotypic variation that can be circumvented by base editing.


Assuntos
Anemia Falciforme , Talassemia beta , Camundongos , Animais , gama-Globinas/genética , gama-Globinas/metabolismo , Edição de Genes , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Anemia Falciforme/genética , Antígenos CD34/metabolismo , Talassemia beta/genética
15.
bioRxiv ; 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37292647

RESUMO

Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for ß-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here we compared combined CRISPR-Cas9 endonuclease editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. We found that combined targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two sgRNAs resulted in superior HbF induction, including in engrafting erythroid cells from sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers. We corroborated prior observations that double strand breaks (DSBs) could produce unintended on- target outcomes in hematopoietic stem and progenitor cells (HSPCs) such as long deletions and centromere-distal chromosome fragment loss. We show these unintended outcomes are a byproduct of cellular proliferation stimulated by ex vivo culture. Editing HSPCs without cytokine culture bypassed long deletion and micronuclei formation while preserving efficient on-target editing and engraftment function. These results indicate that nuclease editing of quiescent hematopoietic stem cells (HSCs) limits DSB genotoxicity while maintaining therapeutic potency and encourages efforts for in vivo delivery of nucleases to HSCs.

16.
Mol Ther Methods Clin Dev ; 29: 483-493, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37273902

RESUMO

CRISPR-Cas9-based therapeutic genome editing approaches hold promise to cure a variety of human diseases. Recent findings demonstrate pre-existing immunity for the commonly used Cas orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans, which threatens the success of this powerful tool in clinical use. Thus, a comprehensive investigation and potential risk assessment are required to exploit the full potential of the system. Here, we investigated existence of immunity to SpCas9 and SaCas9 in control rhesus macaques (Macaca mulatta) alongside monkeys transplanted with either lentiviral transduced or CRISPR-SpCas9 ribonucleoprotein (RNP)-edited cells. We observed significant levels of Cas9 antibodies in the peripheral blood of all transplanted and non-transplanted control animals. Transplantation of ex vivo transduced or SpCas9-mediated BCL11A enhancer-edited cells did not alter the levels of Cas9 antibodies in rhesus monkeys. Following stimulation of peripheral blood cells with SpCas9 or SaCas9, neither Cas9-specific T cells nor cytokine induction were detected. Robust and durable editing frequencies and expression of high levels of fetal hemoglobin in BCL11A enhancer-edited rhesus monkeys with no evidence of an immune response (>3 years) provide an optimistic outlook for the use of ex vivo CRISPR-SpCas9 (RNP)-edited cells.

17.
Cell Rep Methods ; 3(4): 100460, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159663

RESUMO

Although the differentiation of human induced pluripotent stem cells (hiPSCs) into various types of blood cells has been well established, approaches for clinical-scale production of multipotent hematopoietic progenitor cells (HPCs) remain challenging. We found that hiPSCs cocultured with stromal cells as spheroids (hematopoietic spheroids [Hp-spheroids]) can grow in a stirred bioreactor and develop into yolk sac-like organoids without the addition of exogenous factors. Hp-spheroid-induced organoids recapitulated a yolk sac-characteristic cellular complement and structures as well as the functional ability to generate HPCs with lympho-myeloid potential. Moreover, sequential hemato-vascular ontogenesis could also be observed during organoid formation. We demonstrated that organoid-induced HPCs can be differentiated into erythroid cells, macrophages, and T lymphocytes with current maturation protocols. Notably, the Hp-spheroid system can be performed in an autologous and xeno-free manner, thereby improving the feasibility of bulk production of hiPSC-derived HPCs in clinical, therapeutic contexts.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Saco Vitelino , Células-Tronco Hematopoéticas , Organoides , Atividades Cotidianas
18.
Nat Biomed Eng ; 7(5): 616-628, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37069266

RESUMO

Sickle-cell disease (SCD) is caused by an A·T-to-T·A transversion mutation in the ß-globin gene (HBB). Here we show that prime editing can correct the SCD allele (HBBS) to wild type (HBBA) at frequencies of 15%-41% in haematopoietic stem and progenitor cells (HSPCs) from patients with SCD. Seventeen weeks after transplantation into immunodeficient mice, prime-edited SCD HSPCs maintained HBBA levels and displayed engraftment frequencies, haematopoietic differentiation and lineage maturation similar to those of unedited HSPCs from healthy donors. An average of 42% of human erythroblasts and reticulocytes isolated 17 weeks after transplantation of prime-edited HSPCs from four SCD patient donors expressed HBBA, exceeding the levels predicted for therapeutic benefit. HSPC-derived erythrocytes carried less sickle haemoglobin, contained HBBA-derived adult haemoglobin at 28%-43% of normal levels and resisted hypoxia-induced sickling. Minimal off-target editing was detected at over 100 sites nominated experimentally via unbiased genome-wide analysis. Our findings support the feasibility of a one-time prime editing SCD treatment that corrects HBBS to HBBA, does not require any viral or non-viral DNA template and minimizes undesired consequences of DNA double-strand breaks.


Assuntos
Anemia Falciforme , Edição de Genes , Adulto , Humanos , Camundongos , Animais , Sistemas CRISPR-Cas , Globinas beta/genética , Anemia Falciforme/terapia , Anemia Falciforme/genética , Células-Tronco Hematopoéticas , Fenótipo , DNA
19.
Mol Ther Nucleic Acids ; 31: 452-465, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36852088

RESUMO

Transcriptional enhancers can be in physical proximity of their target genes via chromatin looping. The enhancer at the ß-globin locus (locus control region [LCR]) contacts the fetal-type (HBG) and adult-type (HBB) ß-globin genes during corresponding developmental stages. We have demonstrated previously that forcing proximity between the LCR and HBG genes in cultured adult-stage erythroid cells can activate HBG transcription. Activation of HBG expression in erythroid cells is of benefit to patients with sickle cell disease. Here, using the ß-globin locus as a model, we provide proof of concept at the organismal level that forced enhancer rewiring might present a strategy to alter gene expression for therapeutic purposes. Hematopoietic stem and progenitor cells (HSPCs) from mice bearing human ß-globin genes were transduced with lentiviral vectors expressing a synthetic transcription factor (ZF-Ldb1) that fosters LCR-HBG contacts. When engrafted into host animals, HSPCs gave rise to adult-type erythroid cells with elevated HBG expression. Vectors containing ZF-Ldb1 were optimized for activity in cultured human and rhesus macaque erythroid cells. Upon transplantation into rhesus macaques, erythroid cells from HSPCs expressing ZF-Ldb1 displayed elevated HBG production. These findings in two animal models suggest that forced redirection of gene-regulatory elements may be used to alter gene expression to treat disease.

20.
Mol Ther Methods Clin Dev ; 28: 62-75, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36620072

RESUMO

The clonal dynamics following hematopoietic stem progenitor cell (HSPC) transplantation with busulfan conditioning are of great interest to the development of HSPC gene therapies. Compared with total body irradiation (TBI), busulfan is less toxic and more clinically relevant. We used a genetic barcoded HSPC autologous transplantation model to investigate the impact of busulfan conditioning on hematopoietic reconstitution in rhesus macaques. Two animals received lower busulfan dose and demonstrated lower vector marking levels compared with the third animal given a higher busulfan dose, despite similar busulfan pharmacokinetic analysis. We observed uni-lineage clonal engraftment at 1 month post-transplant, replaced by multilineage clones by 2 to 3 months in all animals. The initial multilineage clones in the first two animals were replaced by a second multilineage wave at 9 months; this clonal pattern disappeared at 13 months in the first animal, though was maintained in the second animal. The third animal maintained stable multilineage clones from 3 months to the most recent time point. In addition, busulfan animals exhibit more rapid HSPC clonal mixing across bone marrow sites and less CD16+ NK-biased clonal expansion compared with TBI animals. Therefore, busulfan conditioning regimens can variably impact the marrow niche, resulting in differences in clonal patterns with implications for HSPC gene therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA