Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharm Biol ; 62(1): 447-455, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38753370

RESUMO

CONTEXT: Menhaden fish oil (FO) is widely recognized for inhibiting neuroinflammatory responses and preserving brain function. Nevertheless, the mechanisms of FO influencing brain cognitive function in diabetic states remain unclear. OBJECTIVE: This study examines the potential role of FO in suppressing LPS-induced neuroinflammation and cognitive impairment in diabetic animals (DA). MATERIALS AND METHODS: Thirty male Wistar rats were divided into 5 groups: i) DA received LPS induction (DA-LPS); ii) DA received LPS induction and 1 g/kg FO (DA-LPS-1FO); iii) DA received LPS induction and 3 g/kg FO (DA-LPS-3FO); iv) animals received normal saline and 3 g/kg FO (NS-3FO) and v) control animals received normal saline (CTRL). Y-maze test was used to measure cognitive performance, while brain samples were collected for inflammatory markers and morphological analysis. RESULTS: DA received LPS induction, and 1 or 3 g/kg FO significantly inhibited hyperglycaemia and brain inflammation, as evidenced by lowered levels of pro-inflammatory mediators. Additionally, both DA-LPS-1FO and DA-LPS-3FO groups exhibited a notable reduction in neuronal damage and glial cell migration compared to the other groups. These results were correlated with the increasing number of entries and time spent in the novel arm of the Y-maze test. DISCUSSION AND CONCLUSION: This study indicates that supplementation of menhaden FO inhibits the LPS signaling pathway and protects against neuroinflammation, consequently maintaining cognitive performance in diabetic animals. Thus, the current study suggested that fish oil may be effective as a supporting therapy option for diabetes to avoid diabetes-cognitive impairment.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Suplementos Nutricionais , Óleos de Peixe , Lipopolissacarídeos , Doenças Neuroinflamatórias , Ratos Wistar , Animais , Masculino , Óleos de Peixe/farmacologia , Óleos de Peixe/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Ratos , Disfunção Cognitiva/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Aprendizagem em Labirinto/efeitos dos fármacos , Relação Dose-Resposta a Droga
2.
Open Vet J ; 13(8): 983-990, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37701670

RESUMO

Background: Fish oil, which is regarded as the primary source of omega-3 fatty acids, has been long studied for its potential as an antidiabetic therapy. However, its protective ability against insulin resistance and pancreatic islet alteration remains unclear and controversial. Aim: To investigate the beneficial effects of fish oil consumption on the progression of insulin resistance and pancreatic islet dysfunction in a rat model of diabetes. Methods: Diabetic rats model (n = 30) were divided into five groups and received; 1) NS injection + NS oral (normal control); 2) NS injection + 3 g/kg fish oil (fish oil control); 3) streptozotocin (STZ) injection + NS oral [diabetes control (DC)]; 4) STZ injection + 1 g/kg fish oil (DFO1); and 5) STZ injection + 3 g/kg fish oil (DFO3). Fasting blood insulin was analyzed by commercial rat insulin enzyme-linked immunosorbent assay; meanwhile, the determination of insulin sensitivity was calculated by homeostatic model assessment of insulin resistance (HOMA-IR) and homeostatic model assessment of beta-cell function. A histological study was conducted on pancreas tissue using H and E staining. Results: Fish oil supplementation reduced hyperglycemia and ameliorated HOMA-IR in STZ-induced animal models indicating that fish oil supplementation improved insulin sensitivity. Furthermore, animals treated with fish oil at a dose of 3 g/kg (DFO3) showed an enhancement in pancreatic islets, which was displayed by less abnormal structures than DC animals. This could imply that the administration of fish oil, especially rich in bioactive omega-3 fatty acids effectively inhibits insulin resistance and restore islet of Langerhans alteration in rats injected with STZ. Conclusion: Thus, the current study suggested that fish oil supplementation could support the treatment of diabetes but should not be considered as an alternative therapy.


Assuntos
Diabetes Mellitus Experimental , Ácidos Graxos Ômega-3 , Resistência à Insulina , Ilhotas Pancreáticas , Ratos , Animais , Ratos Wistar , Óleos de Peixe/farmacologia , Estreptozocina , Diabetes Mellitus Experimental/induzido quimicamente , Ácidos Graxos Ômega-3/farmacologia , Insulina , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA