Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38585789

RESUMO

The transcription repressor REST in the dorsal root ganglion (DRG) is upregulated by peripheral nerve injury and promotes the development of chronic pain. However, the genes targeted by REST in neuropathic pain development remain unclear. The expression levels of 4 opioid receptor (Oprm1, Oprd1, Oprl1, Oprk1) and the cannabinoid CB1 receptor (Cnr1) genes in the DRG regulate nociception. In this study, we determined the role of REST in the control of their expression in the DRG induced by spared nerve injury (SNI) in both male and female mice. Transcriptomic analyses of male mouse DRGs followed by quantitative reverse transcription polymerase chain reaction analyses of both male and female mouse DRGs showed that SNI upregulated expression of Rest and downregulated mRNA levels of all 4 opioid receptor and Cnr1 genes, but Oprm1 was upregulated in female mice. Analysis of publicly available bioinformatic data suggested that REST binds to the promoter regions of Oprm1 and Cnr1. Chromatin immunoprecipitation analyses indicated differing levels of REST at these promoters in male and female mice. Full-length Rest conditional knockout in primary sensory neurons reduced SNI-induced pain hypersensitivity and rescued the SNI-induced reduction in the expression of Oprd1 and Cnr1 in the DRG in both male and female mice. Our results suggest that nerve injury represses the transcription of Oprd1 and Cnr1 via REST in primary sensory neurons and that REST is a potential therapeutic target for neuropathic pain.

2.
J Biomed Sci ; 29(1): 83, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253762

RESUMO

Tumor microenvironment (TME) is a specialized ecosystem of host components, designed by tumor cells for successful development and metastasis of tumor. With the advent of 3D culture and advanced bioinformatic methodologies, it is now possible to study TME's individual components and their interplay at higher resolution. Deeper understanding of the immune cell's diversity, stromal constituents, repertoire profiling, neoantigen prediction of TMEs has provided the opportunity to explore the spatial and temporal regulation of immune therapeutic interventions. The variation of TME composition among patients plays an important role in determining responders and non-responders towards cancer immunotherapy. Therefore, there could be a possibility of reprogramming of TME components to overcome the widely prevailing issue of immunotherapeutic resistance. The focus of the present review is to understand the complexity of TME and comprehending future perspective of its components as potential therapeutic targets. The later part of the review describes the sophisticated 3D models emerging as valuable means to study TME components and an extensive account of advanced bioinformatic tools to profile TME components and predict neoantigens. Overall, this review provides a comprehensive account of the current knowledge available to target TME.


Assuntos
Ecossistema , Neoplasias , Humanos , Imunoterapia/métodos , Neoplasias/patologia , Microambiente Tumoral
3.
Foods ; 10(10)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34681400

RESUMO

Wheat gluten contains epitopes that trigger celiac disease (CD). A life-long strict gluten-free diet is the only treatment accepted for CD. However, very low-gluten wheat may provide an alternative treatment to CD. Conventional plant breeding methods have not been sufficient to produce celiac-safe wheat. RNA interference technology, to some extent, has succeeded in the development of safer wheat varieties. However, these varieties have multiple challenges in terms of their implementation. Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease 9 (CRISPR/Cas9) is a versatile gene-editing tool that has the ability to edit immunogenic gluten genes. So far, only a few studies have applied CRISPR/Cas9 to modify the wheat genome. In this article, we reviewed the published literature that applied CRISPR/Cas9 in wheat genome editing to investigate the current status of the CRISPR/Cas9 system to produce a low-immunogenic wheat variety. We found that in recent years, the CRISPR/Cas9 system has been continuously improved to edit the complex hexaploid wheat genome. Although some reduced immunogenic wheat varieties have been reported, CRISPR/Cas9 has still not been fully explored in terms of editing the wheat genome. We conclude that further studies are required to apply the CRISPR/Cas9 gene-editing system efficiently for the development of a celiac-safe wheat variety and to establish it as a "tool to celiac safe wheat".

4.
Cancers (Basel) ; 12(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003386

RESUMO

The multifunctional protein Y-box binding protein-1 (YB-1) regulates all the so far described cancer hallmarks including cell proliferation and survival. The MAPK/ERK and PI3K/Akt pathways are also the major pathways involved in cell growth, proliferation, and survival, and are the frequently hyperactivated pathways in human cancers. A gain of function mutation in KRAS mainly leads to the constitutive activation of the MAPK pathway, while the activation of the PI3K/Akt pathway occurs either through the loss of PTEN or a gain of function mutation of the catalytic subunit alpha of PI3K (PIK3CA). In this study, we investigated the underlying signaling pathway involved in YB-1 phosphorylation at serine 102 (S102) in KRAS(G13D)-mutated triple-negative breast cancer (TNBC) MDA-MB-231 cells versus PIK3CA(H1047R)/PTEN(E307K) mutated TNBC MDA-MB-453 cells. Our data demonstrate that S102 phosphorylation of YB-1 in KRAS-mutated cells is mainly dependent on the MAPK/ERK pathway, while in PIK3CA/PTEN-mutated cells, YB-1 S102 phosphorylation is entirely dependent on the PI3K/Akt pathway. Independent of the individual dominant pathway regulating YB-1 phosphorylation, dual targeting of MEK and PI3K efficiently inhibited YB-1 phosphorylation and blocked cell proliferation. This represents functional crosstalk between the two pathways. Our data obtained from the experiments, applying pharmacological inhibitors and genetic approaches, shows that YB-1 is a key player in cell proliferation, clonogenic activity, and tumor growth of TNBC cells through the MAPK and PI3K pathways. Therefore, dual inhibition of these two pathways or single targeting of YB-1 may be an effective strategy to treat TNBC.

5.
J Vis Exp ; (159)2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32510478

RESUMO

Biomechanical properties of cells and tissues not only regulate their shape and function but are also crucial for maintaining their vitality. Changes in elasticity can propagate or trigger the onset of major diseases like cancer or osteoarthritis (OA). Atomic force microscopy (AFM) has emerged as a strong tool to qualitatively and quantitatively characterize the biomechanical properties of specific biological target structures on a microscopic scale, measuring forces in a range from as small as the piconewton to the micronewton. Biomechanical properties are of special importance in musculoskeletal tissues, which are subjected to high levels of strain. OA as a degenerative disease of the cartilage results in the disruption of the pericellular matrix (PCM) and the spatial rearrangement of the chondrocytes embedded in their extracellular matrix (ECM). Disruption in PCM and ECM has been associated with changes in the biomechanical properties of cartilage. In the present study we used AFM to quantify these changes in relation to the specific spatial pattern changes of the chondrocytes. With each pattern change, significant changes in elasticity were observed for both the PCM and ECM. Measuring the local elasticity thus allows for drawing direct conclusions about the degree of local tissue degeneration in OA.


Assuntos
Cartilagem Articular/patologia , Condrócitos/patologia , Matriz Extracelular/patologia , Microscopia de Força Atômica/métodos , Osteoartrite/patologia , Elasticidade , Humanos
6.
Cancers (Basel) ; 11(4)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31010234

RESUMO

KRAS-mutated colorectal cancers (CRCs) are resistant to cetuximab treatment. The multifunctional Y-box binding protein 1 (YB-1) is overexpressed in CRC and is associated with chemoresistance. In this study, the effects of oncogenic mutated KRAS(G12V) and KRAS(G13D) on YB-1 phosphorylation were investigated in CRC cells. The effects of the inhibition of p90 ribosomal S6 kinase (RSK) on YB-1 phosphorylation, cell proliferation and survival were tested with and without treatment with 5-fluorouracil using pharmacological inhibitors and siRNA. YB-1 phosphorylation status and subcellular distribution in CRC patient tissues were determined by immunofluorescence staining and confocal microscopy. Endogenous expression of mutated KRAS(G13D) and conditional expression of KRAS(G12V) significantly stimulated YB-1 phosphorylation via RSK and were associated with cetuximab resistance. Inhibition of YB-1 by targeting RSK stimulated the Akt signaling pathway, and this stimulation occurred independently of KRAS mutational status. Akt activation interfered with the antiproliferative effect of the RSK inhibitor. Consequently, dual targeting of RSK and Akt efficiently inhibited cell proliferation in KRAS(G13D)-mutated HCT116 and KRAS wild-type SW48 cells. Treatment with 5-fluorouracil (5-FU) significantly enhanced YB-1 phosphorylation in KRAS(G13D)-mutated HCT116 cells but not in KRAS wild-type SW48 cells. Dual targeting of Akt and RSK sensitized HCT116 cells to 5-FU by stimulating 5-FU-induced apoptosis and inhibiting repair of 5-FU-induced DNA damage. YB-1 was highly phosphorylated in CRC patient tumor tissues and was mainly localized in the nucleus. Together, dual targeting of RSK and Akt may be an alternative molecular targeting approach to cetuximab for treating CRC in which YB-1 is highly phosphorylated.

7.
Int J Mol Sci ; 19(8)2018 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126195

RESUMO

Ionizing radiation (IR) and epidermal growth factor (EGF) stimulate Y-box binding protein-1 (YB-1) phosphorylation at Ser-102 in KRAS wild-type (KRASwt) cells, whereas in KRAS mutated (KRASmut) cells, YB-1 is constitutively phosphorylated, independent of IR or EGF. YB-1 activity stimulates the repair of IR-induced DNA double-strand breaks (DSBs) in the nucleus. Thus far, the YB-1 nuclear translocation pattern after cell exposure to various cellular stressors is not clear. In the present study, we investigated the pattern of YB-1 phosphorylation and its possible translocation to the nucleus in KRASwt cells after exposure to IR, EGF treatment, and conditional expression of mutated KRAS(G12V). IR, EGF, and conditional KRAS(G12V) expression induced YB-1 phosphorylation in both the cytoplasmic and nuclear fractions of KRASwt cells. None of the stimuli induced YB-1 nuclear translocation, while p90 ribosomal s6 kinase (RSK) translocation was enhanced in KRASwt cells after any of the stimuli. EGF-induced RSK translocation to the nucleus and nuclear YB-1 phosphorylation were completely blocked by the EGF receptor kinase inhibitor erlotinib. Likewise, RSK inhibition blocked RSK nuclear translocation and nuclear YB-1 phosphorylation after irradiation and KRAS(G12V) overexpression. In summary, acute stimulation of YB-1 phosphorylation does not lead to YB-1 translocation from the cytoplasm to the nucleus. Rather, irradiation, EGF treatment, or KRAS(G12V) overexpression induces RSK activation, leading to its translocation to the nucleus, where it activates already-existing nuclear YB-1. Our novel finding illuminates the signaling pathways involved in nuclear YB-1 phosphorylation and provides a rationale for designing appropriate targeting strategies to block YB-1 in oncology as well as in radiation oncology.


Assuntos
Núcleo Celular/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Transporte Ativo do Núcleo Celular/efeitos da radiação , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/efeitos da radiação , Fator de Crescimento Epidérmico/metabolismo , Humanos , Fosforilação/efeitos da radiação , Mutação Puntual , Proteínas Proto-Oncogênicas p21(ras)/genética , Estresse Fisiológico/efeitos da radiação , Regulação para Cima
8.
Mol Autism ; 2(1): 7, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21575186

RESUMO

BACKGROUND: The inbred mouse strain BTBR T+ tf/J (BTBR) exhibits behavioral deficits that mimic the core deficits of autism. Neuroanatomically, the BTBR strain is also characterized by a complete absence of the corpus callosum. The goal of this study was to identify novel molecular and cellular changes in the BTBR mouse, focusing on neuronal, synaptic, glial and plasticity markers in the limbic system as a model for identifying putative molecular and cellular substrates associated with autistic behaviors. METHODS: Forebrains of 8 to 10-week-old male BTBR and age-matched C57Bl/6J control mice were evaluated by immunohistochemistry using free-floating and paraffin embedded sections. Twenty antibodies directed against antigens specific to neurons, synapses and glia were used. Nissl, Timm and acetylcholinesterase (AchE) stains were performed to assess cytoarchitecture, mossy fibers and cholinergic fiber density, respectively. In the hippocampus, quantitative stereological estimates for the mitotic marker bromodeoxyuridine (BrdU) were performed to determine hippocampal progenitor proliferation, survival and differentiation, and brain-derived neurotrophic factor (BDNF) mRNA was quantified by in situ hybridization. Quantitative image analysis was performed for NG2, doublecortin (DCX), NeuroD, GAD67 and Poly-Sialic Acid Neural Cell Adhesion Molecule (PSA-NCAM). RESULTS: In midline structures including the region of the absent corpus callosum of BTBR mice, the myelin markers 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin basic protein (MBP) were reduced, and the oligodendrocyte precursor NG2 was increased. MBP and CNPase were expressed in small ectopic white matter bundles within the cingulate cortex. Microglia and astrocytes showed no evidence of gliosis, yet orientations of glial fibers were altered in specific white-matter areas. In the hippocampus, evidence of reduced neurogenesis included significant reductions in the number of doublecortin, PSA-NCAM and NeuroD immunoreactive cells in the subgranular zone of the dentate gyrus, and a marked reduction in the number of 5-bromo-2'-deoxyuridine (BrdU) positive progenitors. Furthermore, a significant and profound reduction in BDNF mRNA was seen in the BTBR dentate gyrus. No significant differences were seen in the expression of AchE, mossy fiber synapses or immunoreactivities of microtubule-associated protein MAP2, parvalbumin and glutamate decarboxylase GAD65 or GAD67 isoforms. CONCLUSIONS: We documented modest and selective alterations in glia, neurons and synapses in BTBR forebrain, along with reduced neurogenesis in the adult hippocampus. Of all markers examined, the most distinctive changes were seen in the neurodevelopmental proteins NG2, PSA-NCAM, NeuroD and DCX. Our results are consistent with aberrant development of the nervous system in BTBR mice, and may reveal novel substrates to link callosal abnormalities and autistic behaviors. The changes that we observed in the BTBR mice suggest potential novel therapeutic strategies for intervention in autism spectrum disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA