Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645737

RESUMO

Immune checkpoint blockade (ICB) has revolutionized cancer therapy but has had limited utility in several solid tumors such as breast cancer, a major cause of cancer-related mortality in women. Therefore, there is considerable interest in alternate strategies to promote an anti-cancer immune response. We demonstrate that NR0B2, a protein involved in cholesterol homeostasis, functions within myeloid immune cells to modulate the NLRP3 inflammasome and reduce the expansion of immune-suppressive regulatory T cells (Treg). Loss of NR0B2 increased mammary tumor growth and metastasis. Small molecule agonists, including one developed here, reduced Treg expansion, reduced metastatic growth and improved the efficacy of ICB. This work identifies NR0B2 as a target to re-educate myeloid immune cells providing proof-of-principle that this cholesterol-homeostasis axis may have utility in enhancing ICB.

2.
Sci Adv ; 9(1): eabq3951, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608120

RESUMO

Metastases arise from rare cancer cells that successfully adapt to the diverse microenvironments encountered during dissemination through the bloodstream and colonization of distant tissues. How cancer cells acquire the ability to appropriately respond to microenvironmental stimuli remains largely unexplored. Here, we report an epigenetic pliancy mechanism that allows cancer cells to successfully metastasize. We find that a decline in the activity of the transcriptional repressor ZBTB18 defines metastasis-competent cancer cells in mouse models. Restoration of ZBTB18 activity reduces chromatin accessibility at the promoters of genes that drive metastasis, such as Tgfbr2, and this prevents TGFß1 pathway activation and consequently reduces cell migration and invasion. Besides repressing the expression of metastatic genes, ZBTB18 also induces widespread chromatin closing, a global epigenetic adaptation previously linked to reduced phenotypic flexibility. Thus, ZBTB18 is a potent chromatin regulator, and the loss of its activity enhances chromatin accessibility and transcriptional adaptations that promote the phenotypic changes required for metastasis.


Assuntos
Cromatina , Proteínas Repressoras , Animais , Camundongos , Cromatina/genética , Epigênese Genética , Proteínas Repressoras/genética
3.
Front Bioinform ; 2: 764619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304269

RESUMO

Genomics researchers do better work when they can interactively explore and visualize data. Due to the vast size of experimental datasets, researchers are increasingly using powerful, cloud-based systems to process and analyze data. These remote systems, called science gateways, offer user-friendly, Web-based access to high performance computing and storage resources, but typically lack interactive visualization capability. In this paper, we present BioViz Connect, a middleware Web application that links CyVerse science gateway resources to the Integrated Genome Browser (IGB), a highly interactive native application implemented in Java that runs on the user's personal computer. Using BioViz Connect, users can 1) stream data from the CyVerse data store into IGB for visualization, 2) improve the IGB user experience for themselves and others by adding IGB specific metadata to CyVerse data files, including genome version and track appearance, and 3) run compute-intensive visual analytics functions on CyVerse infrastructure to create new datasets for visualization in IGB or other applications. To demonstrate how BioViz Connect facilitates interactive data visualization, we describe an example RNA-Seq data analysis investigating how heat and desiccation stresses affect gene expression in the model plant Arabidopsis thaliana. The RNA-Seq use case illustrates how interactive visualization with IGB can help a user identify problematic experimental samples, sanity-check results using a positive control, and create new data files for interactive visualization in IGB (or other tools) using a Docker image deployed to CyVerse via the Terrain API. Lastly, we discuss limitations of the technologies used and suggest opportunities for future work. BioViz Connect is available from https://bioviz.org.

4.
Endocrinology ; 163(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569056

RESUMO

Dysregulation of cholesterol homeostasis is associated with many diseases such as cardiovascular disease and cancer. Liver X receptors (LXRs) are major upstream regulators of cholesterol homeostasis and are activated by endogenous cholesterol metabolites such as 27-hydroxycholesterol (27HC). LXRs and various LXR ligands such as 27HC have been described to influence several extra-hepatic biological systems. However, disparate reports of LXR function have emerged, especially with respect to immunology and cancer biology. This would suggest that, similar to steroid nuclear receptors, the LXRs can be selectively modulated by different ligands. Here, we use RNA-sequencing of macrophages and single-cell RNA-sequencing of immune cells from metastasis-bearing murine lungs to provide evidence that LXR satisfies the 2 principles of selective nuclear receptor modulation: (1) different LXR ligands result in overlapping but distinct gene expression profiles within the same cell type, and (2) the same LXR ligands differentially regulate gene expression in a highly context-specific manner, depending on the cell or tissue type. The concept that the LXRs can be selectively modulated provides the foundation for developing precision pharmacology LXR ligands that are tailored to promote those activities that are desirable (proimmune), but at the same time minimizing harmful side effects (such as elevated triglyceride levels).


Assuntos
Receptores X do Fígado , Neoplasias Mamárias Experimentais , Células Mieloides , Receptores de Esteroides , Animais , Colesterol/metabolismo , Feminino , Ligantes , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Células Mieloides/metabolismo , Células Mieloides/patologia , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , RNA/genética , RNA/metabolismo , Receptores de Esteroides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA