Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13333, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858421

RESUMO

Mammalian cardiomyocytes (CMs) mostly become polyploid shortly after birth. Because this feature may relate to several aspects of heart biology, including regeneration after injury, the mechanisms that cause polyploidy are of interest. BALB/cJ and BALB/cByJ mice are highly related sister strains that diverge substantially in CM ploidy. We identified a large deletion in the Cyth1 gene that arose uniquely in BALB/cByJ mice that creates a null allele. The deletion also results in ectopic transcription of the downstream gene Dnah17, although this transcript is unlikely to encode a protein. By evaluating the natural null allele from BALB/cByJ and an engineered knockout allele in the C57BL/6J background, we determined that absence of Cyth1 does not by itself influence CM ploidy. The ready availability of BALB/cByJ mice may be helpful to other investigations of Cyth1 in other biological processes.


Assuntos
Camundongos Endogâmicos BALB C , Miócitos Cardíacos , Poliploidia , Animais , Camundongos , Alelos , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mutação com Perda de Função , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo
2.
J Cardiovasc Dev Dis ; 10(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37103040

RESUMO

Adult hearts are characterized by inefficient regeneration after injury, thus, the features that support or prevent cardiomyocyte (CM) proliferation are important to clarify. Diploid CMs are a candidate cell type that may have unique proliferative and regenerative competence, but no molecular markers are yet known that selectively identify all or subpopulations of diploid CMs. Here, using the conduction system expression marker Cntn2-GFP and the conduction system lineage marker Etv1CreERT2, we demonstrate that Purkinje CMs that comprise the adult ventricular conduction system are disproportionately diploid (33%, vs. 4% of bulk ventricular CMs). These, however, represent only a small proportion (3%) of the total diploid CM population. Using EdU incorporation during the first postnatal week, we demonstrate that bulk diploid CMs found in the later heart enter and complete the cell cycle during the neonatal period. In contrast, a significant fraction of conduction CMs persist as diploid cells from fetal life and avoid neonatal cell cycle activity. Despite their high degree of diploidy, the Purkinje lineage had no enhanced competence to support regeneration after adult heart infarction.

3.
J Tissue Eng Regen Med ; 16(9): 799-811, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35689600

RESUMO

Acute cardiac injuries occur in 20%-25% of hospitalized COVID-19 patients. Herein, we demonstrate that human cardiac organoids (hCOs) are a viable platform to model the cardiac injuries caused by COVID-19 hyperinflammation. As IL-1ß is an upstream cytokine and a core COVID-19 signature cytokine, it was used to stimulate hCOs to induce the release of a milieu of proinflammatory cytokines that mirror the profile of COVID-19 cytokine storm. The IL-1ß treated hCOs recapitulated transcriptomic, structural, and functional signatures of COVID-19 hearts. The comparison of IL-1ß treated hCOs with cardiac tissue from COVID-19 autopsies illustrated the critical roles of hyper-inflammation in COVID-19 cardiac insults and indicated the cardioprotective effects of endothelium. The IL-1ß treated hCOs thus provide a defined and robust model to assess the efficacy and potential side effects of immunomodulatory drugs, as well as the reversibility of COVID-19 cardiac injuries at baseline and simulated exercise conditions.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Cardiopatias , COVID-19/complicações , Síndrome da Liberação de Citocina/virologia , Citocinas/metabolismo , Cardiopatias/virologia , Humanos , Modelos Biológicos , Organoides
4.
bioRxiv ; 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132419

RESUMO

Acute cardiac injuries occur in 20-25% of hospitalized COVID-19 patients. Despite urgent needs, there is a lack of 3D organotypic models of COVID-19 hearts for mechanistic studies and drug testing. Herein, we demonstrate that human cardiac organoids (hCOs) are a viable platform to model the cardiac injuries caused by COVID-19 hyperinflammation. As IL-1ßis an upstream cytokine and a core COVID-19 signature cytokine, it was used to stimulate hCOs to induce the release of a milieu of proinflammatory cytokines that mirror the profile of COVID-19 cytokine storm. The IL-1 ß treated hCOs recapitulated transcriptomic, structural, and functional signatures of COVID-19 hearts. The comparison of IL-1ß treated hCOs with cardiac tissue from COVID-19 autopsies illustrated the critical roles of hyper-inflammation in COVID-19 cardiac insults and indicated the cardioprotective effects of endothelium. The IL-1ß treated hCOs also provide a viable model to assess the efficacy and potential side effects of immunomodulatory drugs, as well as the reversibility of COVID-19 cardiac injuries at baseline and simulated exercise conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA