Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6602, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39097583

RESUMO

Broadening gene therapy applications requires manufacturable vectors that efficiently transduce target cells in humans and preclinical models. Conventional selections of adeno-associated virus (AAV) capsid libraries are inefficient at searching the vast sequence space for the small fraction of vectors possessing multiple traits essential for clinical translation. Here, we present Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait AAV capsids. By leveraging a capsid library that uniformly samples the manufacturable sequence space, reproducible screening data are generated to train accurate sequence-to-function models. Combining six models, we designed a multi-trait (liver-targeted, manufacturable) capsid library and validated 88% of library variants on all six predetermined criteria. Furthermore, the models, trained only on mouse in vivo and human in vitro Fit4Function data, accurately predicted AAV capsid variant biodistribution in macaque. Top candidates exhibited production yields comparable to AAV9, efficient murine liver transduction, up to 1000-fold greater human hepatocyte transduction, and increased enrichment relative to AAV9 in a screen for liver transduction in macaques. The Fit4Function strategy ultimately makes it possible to predict cross-species traits of peptide-modified AAV capsids and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits.


Assuntos
Proteínas do Capsídeo , Capsídeo , Dependovirus , Vetores Genéticos , Fígado , Dependovirus/genética , Animais , Humanos , Camundongos , Vetores Genéticos/genética , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Fígado/metabolismo , Transdução Genética , Técnicas de Transferência de Genes , Aprendizado de Máquina , Terapia Genética/métodos , Macaca , Hepatócitos/metabolismo , Células HEK293 , Engenharia Genética/métodos
2.
Science ; 384(6701): 1220-1227, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38753766

RESUMO

Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an adeno-associated virus (AAV) capsid, BI-hTFR1, that binds human transferrin receptor (TfR1), a protein expressed on the blood-brain barrier. BI-hTFR1 was actively transported across human brain endothelial cells and, relative to AAV9, provided 40 to 50 times greater reporter expression in the CNS of human TFRC knockin mice. The enhanced tropism was CNS-specific and absent in wild-type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared with AAV9. These findings establish BI-hTFR1 as a potential vector for human CNS gene therapy.


Assuntos
Antígenos CD , Encéfalo , Capsídeo , Técnicas de Transferência de Genes , Vetores Genéticos , Glucosilceramidase , Receptores da Transferrina , Animais , Humanos , Camundongos , Antígenos CD/metabolismo , Antígenos CD/genética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Dependovirus , Células Endoteliais/metabolismo , Técnicas de Introdução de Genes , Terapia Genética , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Glucosilceramidase/genética , Doença de Gaucher/genética , Doença de Gaucher/terapia , Doença de Parkinson/genética , Doença de Parkinson/terapia
3.
PLoS Biol ; 21(7): e3002112, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37467291

RESUMO

Viruses have evolved the ability to bind and enter cells through interactions with a wide variety of cell macromolecules. We engineered peptide-modified adeno-associated virus (AAV) capsids that transduce the brain through the introduction of de novo interactions with 2 proteins expressed on the mouse blood-brain barrier (BBB), LY6A or LY6C1. The in vivo tropisms of these capsids are predictable as they are dependent on the cell- and strain-specific expression of their target protein. This approach generated hundreds of capsids with dramatically enhanced central nervous system (CNS) tropisms within a single round of screening in vitro and secondary validation in vivo thereby reducing the use of animals in comparison to conventional multi-round in vivo selections. The reproducible and quantitative data derived via this method enabled both saturation mutagenesis and machine learning (ML)-guided exploration of the capsid sequence space. Notably, during our validation process, we determined that nearly all published AAV capsids that were selected for their ability to cross the BBB in mice leverage either the LY6A or LY6C1 protein, which are not present in primates. This work demonstrates that AAV capsids can be directly targeted to specific proteins to generate potent gene delivery vectors with known mechanisms of action and predictable tropisms.


Assuntos
Barreira Hematoencefálica , Capsídeo , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Capsídeo/metabolismo , Vetores Genéticos , Sistema Nervoso Central/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo
4.
bioRxiv ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38187643

RESUMO

Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an AAV capsid, BI-hTFR1, that binds human Transferrin Receptor (TfR1), a protein expressed on the blood-brain barrier (BBB). BI-hTFR1 was actively transported across a human brain endothelial cell layer and, relative to AAV9, provided 40-50 times greater reporter expression in the CNS of human TFRC knock-in mice. The enhanced tropism was CNS-specific and absent in wild type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared to AAV9. These findings establish BI-hTFR1 as a promising vector for human CNS gene therapy.

5.
Tumour Virus Res ; 14: 200248, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265836

RESUMO

Papillomaviruses have been evolving alongside their hosts for at least 450 million years. This review will discuss some of the insights gained into the evolution of this diverse family of viruses. Papillomavirus evolution is constrained by pervasive purifying selection to maximize viral fitness. Yet these viruses need to adapt to changes in their environment, e.g., the host immune system. It has long been known that these viruses evolved a codon usage that doesn't match the infected host. Here we discuss how papillomavirus genomes evolve by acquiring synonymous changes that allow the virus to avoid detection by the host innate immune system without changing the encoded proteins and associated fitness loss. We discuss the implications of studying viral evolution, lifecycle, and cancer progression.


Assuntos
Evolução Molecular , Genoma Viral , Códon , Genoma Viral/genética , Nucleotídeos , Uso do Códon , Papillomaviridae/genética
6.
Nat Cardiovasc Res ; 1(4): 389-400, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35571675

RESUMO

Endothelial cells have a crucial role in nervous system function, and mounting evidence points to endothelial impairment as a major contributor to a wide range of neurological diseases. However, tools to genetically interrogate these cells in vivo remain limited. Here, we describe AAV-BI30, a capsid that specifically and efficiently transduces endothelial cells throughout the central nervous system. At relatively low systemic doses, this vector transduces the majority of arterial, capillary, and venous endothelial cells in the brain, retina, and spinal cord vasculature of adult C57BL/6 mice. Furthermore, we show that AAV-BI30 robustly transduces endothelial cells in multiple mouse strains and rats in vivo and human brain microvascular endothelial cells in vitro. Finally, we demonstrate AAV-BI30's capacity to achieve efficient and endothelial-specific Cre-mediated gene manipulation in the central nervous system. This combination of attributes makes AAV-BI30 uniquely well-suited to address outstanding research questions in neurovascular biology and aid the development of therapeutics to remediate endothelial dysfunction in disease.

7.
PLoS One ; 14(11): e0225206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725765

RESUMO

The engineered AAV-PHP.B family of adeno-associated virus efficiently delivers genes throughout the mouse central nervous system. To guide their application across disease models, and to inspire the development of translational gene therapy vectors for targeting neurological diseases in humans, we sought to elucidate the host factors responsible for the CNS tropism of the AAV-PHP.B vectors. Leveraging CNS tropism differences across 13 mouse strains, we systematically determined a set of genetic variants that segregate with the permissivity phenotype, and rapidly identified LY6A as an essential receptor for the AAV-PHP.B vectors. Interfering with LY6A by CRISPR/Cas9-mediated Ly6a disruption or with blocking antibodies reduced transduction of mouse brain endothelial cells by AAV-PHP.eB, while ectopic expression of Ly6a increased AAV-PHP.eB transduction of HEK293T and CHO cells by 30-fold or more. Importantly, we demonstrate that this newly discovered mode of AAV binding and transduction can occur independently of other known AAV receptors. These findings illuminate the previously reported species- and strain-specific tropism characteristics of the AAV-PHP.B vectors and inform ongoing efforts to develop next-generation AAV vehicles for human CNS gene therapy.


Assuntos
Barreira Hematoencefálica/metabolismo , Técnicas de Transferência de Genes , Transdução Genética , Transgenes , Animais , Antígenos Ly/química , Antígenos Ly/genética , Encéfalo/metabolismo , Linhagem Celular , Dependovirus/genética , Variação Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Neurônios/metabolismo , Tropismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA