Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(25): e2201980119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696571

RESUMO

Endosomal sorting maintains cellular homeostasis by recycling transmembrane proteins and associated proteins and lipids (termed "cargoes") from the endosomal network to multiple subcellular destinations, including retrograde traffic to the trans-Golgi network (TGN). Viral and bacterial pathogens subvert retrograde trafficking machinery to facilitate infectivity. Here, we develop a proteomic screen to identify retrograde cargo proteins of the endosomal SNX-BAR sorting complex promoting exit 1 (ESCPE-1). Using this methodology, we identify Neuropilin-1 (NRP1), a recently characterized host factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as a cargo directly bound and trafficked by ESCPE-1. ESCPE-1 mediates retrograde trafficking of engineered nanoparticles functionalized with the NRP1-interacting peptide of the SARS-CoV-2 spike (S) protein. CRISPR-Cas9 deletion of ESCPE-1 subunits reduces SARS-CoV-2 infection levels in cell culture. ESCPE-1 sorting of NRP1 may therefore play a role in the intracellular membrane trafficking of NRP1-interacting viruses such as SARS-CoV-2.


Assuntos
COVID-19 , Endossomos , Interações Hospedeiro-Patógeno , Neuropilina-1 , SARS-CoV-2 , COVID-19/metabolismo , COVID-19/virologia , Sistemas CRISPR-Cas , Endossomos/virologia , Deleção de Genes , Humanos , Nanopartículas , Neuropilina-1/genética , Neuropilina-1/metabolismo , Proteômica , SARS-CoV-2/metabolismo , Nexinas de Classificação/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Nanomaterials (Basel) ; 11(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34947606

RESUMO

The current diagnostic and therapeutic strategies for endometriosis are limited. Although endometriosis is a benign condition, some of its traits, such as increased cell invasion, migration, tissue inflammation, and angiogenesis are similar to cancer. Here we explored the application of homing peptides for precision delivery of diagnostic and therapeutic compounds to endometriotic lesions. First, we audited a panel of peptide phages for the binding to the cultured immortalized endometriotic epithelial 12Z and eutopic stromal HESC cell lines. The bacteriophages displaying PL1 peptide that engages with angiogenic extracellular matrix overexpressed in solid tumors showed the strongest binding to both cell lines. The receptors of PL1 peptide, tenascin C domain C (TNC-C) and fibronectin Extra Domain-B (Fn-EDB), were expressed in both cells. Silver nanoparticles functionalized with synthetic PL1 peptide showed specific internalization in 12Z and HESC cells. Treatment with PL1-nanoparticles loaded with the potent antimitotic drug monomethyl auristatin E decreased the viability of endometriotic cells in 2D and 3D cultures. Finally, PL1-nanoparticless bound to the cryosections of clinical peritoneal endometriotic lesions in the areas positive for TNC-C and Fn-EDB immunoreactivities and not to sections of normal endometrium. Our findings suggest potential applications for PL1-guided nanoparticles in precision diagnosis and therapy of endometriosis.

3.
Pharmaceutics ; 13(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34959279

RESUMO

Tumor extracellular matrix (ECM) is a high-capacity target for the precision delivery of affinity ligand-guided drugs and imaging agents. Recently, we developed a PL1 peptide (sequence: PPRRGLIKLKTS) for systemic targeting of malignant ECM. Here, we map the dynamics of PL1 binding to its receptors Fibronectin Extra Domain B (FN-EDB) and Tenascin C C-isoform (TNC-C) by computational modeling and cell-free binding studies on mutated receptor proteins, and study cellular binding and internalization of PL1 nanoparticles in cultured cells. Molecular dynamics simulation and docking analysis suggested that the engagement of PL1 peptide with both receptors is primarily driven by electrostatic interactions. Substituting acidic amino acid residues with neutral amino acids at predicted PL1 binding sites in FN-EDB (D52N-D49N-D12N) and TNC-C (D39N-D45N) resulted in the loss of binding of PL1 nanoparticles. Remarkably, PL1-functionalized nanoparticles (NPs) were not only deposited on the target ECM but bound the cells and initiated a robust cellular uptake via a pathway resembling macropinocytosis. Our studies establish the mode of engagement of the PL1 peptide with its receptors and suggest applications for intracellular delivery of nanoscale payloads. The outcomes of this work can be used for the development of PL1-derived peptides with improved stability, affinity, and specificity for precision targeting of the tumor ECM and malignant cells.

4.
Nucleic Acids Res ; 49(7): e38, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33444445

RESUMO

In vivo phage display is widely used for identification of organ- or disease-specific homing peptides. However, the current in vivo phage biopanning approaches fail to assess biodistribution of specific peptide phages across tissues during the screen, thus necessitating laborious and time-consuming post-screening validation studies on individual peptide phages. Here, we adopted bioinformatics tools used for RNA sequencing for analysis of high-throughput sequencing (HTS) data to estimate the representation of individual peptides during biopanning in vivo. The data from in vivo phage screen were analyzed using differential binding-relative representation of each peptide in the target organ versus in a panel of control organs. Application of this approach in a model study using low-diversity peptide T7 phage library with spiked-in brain homing phage demonstrated brain-specific differential binding of brain homing phage and resulted in identification of novel lung- and brain-specific homing peptides. Our study provides a broadly applicable approach to streamline in vivo peptide phage biopanning and to increase its reproducibility and success rate.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Ensaios de Triagem em Larga Escala/métodos , Biblioteca de Peptídeos , Peptídeos/metabolismo , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual
5.
Science ; 370(6518): 856-860, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33082293

RESUMO

The causative agent of coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For many viruses, tissue tropism is determined by the availability of virus receptors and entry cofactors on the surface of host cells. In this study, we found that neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, an effect blocked by a monoclonal blocking antibody against NRP1. A SARS-CoV-2 mutant with an altered furin cleavage site did not depend on NRP1 for infectivity. Pathological analysis of olfactory epithelium obtained from human COVID-19 autopsies revealed that SARS-CoV-2 infected NRP1-positive cells facing the nasal cavity. Our data provide insight into SARS-CoV-2 cell infectivity and define a potential target for antiviral intervention.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Neuropilina-1/metabolismo , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/imunologia , Betacoronavirus/genética , COVID-19 , Células CACO-2 , Feminino , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Pulmão/metabolismo , Masculino , Nanopartículas Metálicas , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neuropilina-1/química , Neuropilina-1/genética , Neuropilina-1/imunologia , Neuropilina-2/metabolismo , Mucosa Olfatória/metabolismo , Mucosa Olfatória/virologia , Pandemias , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Domínios Proteicos , Mucosa Respiratória/metabolismo , SARS-CoV-2 , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/química
6.
Mol Ther ; 28(8): 1833-1845, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32497513

RESUMO

Systemic skin-selective therapeutics would be a major advancement in the treatment of diseases affecting the entire skin, such as recessive dystrophic epidermolysis bullosa (RDEB), which is caused by mutations in the COL7A1 gene and manifests in transforming growth factor-ß (TGF-ß)-driven fibrosis and malignant transformation. Homing peptides containing a C-terminal R/KXXR/K motif (C-end rule [CendR] sequence) activate an extravasation and tissue penetration pathway for tumor-specific drug delivery. We have previously described a homing peptide CRKDKC (CRK) that contains a cryptic CendR motif and homes to angiogenic blood vessels in wounds and tumors, but it cannot penetrate cells or tissues. In this study, we demonstrate that removal of the cysteine from CRK to expose the CendR sequence confers the peptide novel ability to home to normal skin. Fusion of the truncated CRK (tCRK) peptide to the C terminus of an extracellular matrix protein decorin (DCN), a natural TGF-ß inhibitor, resulted in a skin-homing therapeutic molecule (DCN-tCRK). Systemic DCN-tCRK administration in RDEB mice led to inhibition of TGF-ß signaling in the skin and significant improvement in the survival of RDEB mice. These results suggest that DCN-tCRK has the potential to be utilized as a novel therapeutic compound for the treatment of dermatological diseases such as RDEB.


Assuntos
Epidermólise Bolhosa/etiologia , Epidermólise Bolhosa/metabolismo , Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Animais , Biomarcadores , Modelos Animais de Doenças , Epidermólise Bolhosa/patologia , Fibrose , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Neuropilina-1/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , Proteínas Recombinantes de Fusão/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Cicatrização/efeitos dos fármacos
7.
Sci Rep ; 10(1): 5809, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242067

RESUMO

Extracellular matrix in solid tumors has emerged as a specific, stable, and abundant target for affinity-guided delivery of anticancer drugs. Here we describe the homing peptide that interacts with the C-isoform of Tenascin-C (TNC-C) upregulated in malignant tissues. TNC-C binding PL3 peptide (amino acid sequence: AGRGRLVR) was identified by in vitro biopanning on recombinant TNC-C. Besides TNC-C, PL3 interacts via its C-end Rule (CendR) motif with cell-and tissue penetration receptor neuropilin-1 (NRP-1). Functionalization of iron oxide nanoworms (NWs) and metallic silver nanoparticles (AgNPs) with PL3 peptide increased tropism of systemic nanoparticles towards glioblastoma (GBM) and prostate carcinoma xenograft lesions in nude mice (eight and five-fold respectively). Treatment of glioma-bearing mice with proapoptotic PL3-guided NWs improved the survival of the mice, whereas treatment with untargeted particles had no effect. PL3-coated nanoparticles were found to accumulate in TNC-C and NRP-1-positive areas in clinical tumor samples, suggesting a translational relevance. The systemic tumor-targeting properties and binding of PL3-NPs to the clinical tumor sections, suggest that the PL3 peptide may have applications as a targeting moiety for the selective delivery of imaging and therapeutic agents to solid tumors.


Assuntos
Antineoplásicos/farmacocinética , Peptídeos Penetradores de Células/farmacocinética , Glioblastoma/metabolismo , Neoplasias da Próstata/metabolismo , Tenascina/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/química , Feminino , Humanos , Masculino , Nanopartículas Metálicas/química , Camundongos , Camundongos Nus , Neuropilina-1/metabolismo , Células PC-3 , Ligação Proteica , Prata/química , Distribuição Tecidual , Microambiente Tumoral
8.
Biomaterials ; 219: 119373, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31374479

RESUMO

Oncofetal fibronectin (FN-EDB) and tenascin-C C domain (TNC-C) are nearly absent in extracellular matrix of normal adult tissues but upregulated in malignant tissues. Both FN-EDB and TNC-C are developed as targets of antibody-based therapies. Here we used peptide phage biopanning to identify a novel targeting peptide (PL1, sequence: PPRRGLIKLKTS) that interacts with both FN-EDB and TNC-C. Systemic PL1-functionalized model nanoscale payloads [iron oxide nanoworms (NWs) and metallic silver nanoparticles] homed to glioblastoma (GBM) and prostate carcinoma xenografts, and to non-malignant angiogenic neovessels induced by VEGF-overexpression. Antibody blockage experiments demonstrated that PL1 tumor homing involved interactions with both receptor proteins. Treatment of GBM mice with PL1-targeted model therapeutic nanocarrier (NWs loaded with a proapoptotic peptide) resulted in reduced tumor growth and increased survival, whereas treatment with untargeted particles had no effect. PL1 peptide may have applications as an affinity ligand for delivery of diagnostic and therapeutic compounds to microenvironment of solid tumors.


Assuntos
Sistemas de Liberação de Medicamentos , Fibronectinas/metabolismo , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Tenascina/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Linhagem Celular Tumoral , Compostos Férricos/química , Glioblastoma/tratamento farmacológico , Humanos , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/química , Camundongos Nus , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Prata/química
9.
J Control Release ; 308: 109-118, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255690

RESUMO

Tumor-selective drug conjugates can potentially improve the prognosis for patients affected by glioblastoma (GBM) - the most common and malignant type of brain cancer with no effective cure. Here we evaluated a novel tumor penetrating peptide that targets cell surface p32, LinTT1 (AKRGARSTA), as a GBM targeting ligand for systemically-administered nanoparticles. LinTT1-functionalization increased tumor homing of iron oxide nanoworms (NWs) across a panel of five GBM models ranging from infiltratively-disseminating to angiogenic phenotypes. LinTT1-NWs homed to CD31-positive tumor blood vessels, including to transdifferentiated endothelial cells, and showed co-localization with tumor macrophages and lymphatic vessels. LinTT1 functionalization also resulted in increased GBM delivery of other types of systemically-administered nanoparticles: silver nanoparticles and albumin-paclitaxel nanoparticles. Finally, LinTT1-guided proapoptotic NWs exerted strong anti-glioma activity in two models of GBM, including doubling the lifespan of the mice in an aggressive orthotopic stem cell-like GBM that recapitulates the histological hallmarks of human GBM. Our study suggests that LinTT1 targeting strategy can be used to increase GBM uptake of systemic nanoparticles for improved imaging and therapy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Nanopartículas , Peptídeos/administração & dosagem , Albuminas/administração & dosagem , Albuminas/farmacocinética , Animais , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Feminino , Compostos Férricos/química , Glioblastoma/patologia , Humanos , Masculino , Nanopartículas Metálicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Peptídeos/química , Prata/química , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Rep ; 7(1): 14655, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116108

RESUMO

Tumor-associated macrophages (TAMs) expressing the multi-ligand endocytic receptor mannose receptor (CD206/MRC1) contribute to tumor immunosuppression, angiogenesis, metastasis, and relapse. Here, we describe a peptide that selectively targets MRC1-expressing TAMs (MEMs). We performed in vivo peptide phage display screens in mice bearing 4T1 metastatic breast tumors to identify peptides that target peritoneal macrophages. Deep sequencing of the peptide-encoding inserts in the selected phage pool revealed enrichment of the peptide CSPGAKVRC (codenamed "UNO"). Intravenously injected FAM-labeled UNO (FAM-UNO) homed to tumor and sentinel lymph node MEMs in different cancer models: 4T1 and MCF-7 breast carcinoma, B16F10 melanoma, WT-GBM glioma and MKN45-P gastric carcinoma. Fluorescence anisotropy assay showed that FAM-UNO interacts with recombinant CD206 when subjected to reducing conditions. Interestingly, the GSPGAK motif is present in all CD206-binding collagens. FAM-UNO was able to transport drug-loaded nanoparticles into MEMs, whereas particles without the peptide were not taken up by MEMs. In ex vivo organ imaging, FAM-UNO showed significantly higher accumulation in sentinel lymph nodes than a control peptide. This study suggests applications for UNO peptide in diagnostic imaging and therapeutic targeting of MEMs in solid tumors.


Assuntos
Sistemas de Liberação de Medicamentos , Lectinas Tipo C/metabolismo , Macrófagos/efeitos dos fármacos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Lectinas de Ligação a Manose/metabolismo , Peptídeos/uso terapêutico , Receptores de Superfície Celular/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Feminino , Receptor de Manose , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Proteínas Recombinantes
11.
Nanoscale ; 9(28): 10094-10100, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28695222

RESUMO

Attaching affinity ligands to nanoparticles (NPs) increases selectivity for targeting cells and tissues, and can result in improved sensitivity and reduced off-target toxicity in diagnostic and therapeutic systems. The decision over key features - NP size, shape, coating strategies and targeting ligands for clinical translation is often hampered by a lack of quantitative in vivo NP homing assays. Sensitive, internally controlled assays are needed which allow for quantitative comparisons (auditions) among various formulations of targeted NPs. We recently reported the development of peptide-functionalized, isotopically-barcoded silver NPs (AgNPs) for ultrasensitive studies centered on measuring relative ratios of NP internalization into cultured cells. Here we evaluated the application of this technology for NP homing studies in live mice using peptides with previously described tissue tropism; one peptide that favors vascular beds of the normal lungs (RPARPAR; receptor neuropilin-1, or NRP-1) and another that is selective for central nervous system vessels (CAGALCY). Equimolar mixtures of the peptide-targeted Ag107-NPs and Ag109 control particles were mixed and injected intravenously. Distribution profiles of Ag107 and Ag109 in tissue extracts were determined simultaneously through inductively coupled plasma mass spectrometry (ICP-MS). Compared to non-targeted particles up to ∼9-fold increased lung accumulation was seen for RPARPAR-OH AgNPs (but not for AgNPs functionalized with RPARPAR-NH2, which does not bind to NRP-1). Similarly, AgNPs functionalized with the brain-homing CAGALCY peptide were overrepresented in brain extracts. Spatial distribution (mapping) analysis by laser ablation ICP-MS (LA-ICP-MS) was used to determine the ratio Ag107/Ag109 in tissue cryosections. The mapping demonstrated preferential accumulation of the RPARPAR-AgNPs in the perivascular areas around pulmonary veins, and CAGALCY AgNPs accumulated in discrete areas of the brain (e.g. in the vessels of cerebellar fibrillary tracts). Based on these results, the internally controlled ratiometric AgNP system is suitable for quantitative studies of the effect of targeting ligands on NP biodistribution, at average tissue concentration and distribution at the microscopic level. The platform might be particularly relevant for target sites with high local variability in uptake, such as tumors.


Assuntos
Nanopartículas Metálicas , Terapia de Alvo Molecular , Prata/farmacocinética , Animais , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Peptídeos/administração & dosagem , Distribuição Tecidual
12.
J Control Release ; 260: 142-153, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28603028

RESUMO

Gastrointestinal and gynecological malignancies disseminate in the peritoneal cavity - a condition known as peritoneal carcinomatosis (PC). Intraperitoneal (IP) administration can be used to improve therapeutic index of anticancer drugs used for PC treatment. Activity of IP anticancer drugs can be further potentiated by encapsulation in nanocarriers and/or affinity targeting with tumor-specific affinity ligands, such as tumor homing peptides. Here we evaluated a novel tumor penetrating peptide, linTT1 (AKRGARSTA), as a PC targeting ligand for nanoparticles. We first demonstrated that the primary homing receptor for linTT1, p32 (or gC1qR), is expressed on the cell surface of peritoneal carcinoma cell lines of gastric (MKN-45P), ovarian (SKOV-3), and colon (CT-26) origin, and that peritoneal tumors in mice and clinical peritoneal carcinoma explants express p32 protein accessible from the IP space. Iron oxide nanoworms (NWs) functionalized with the linTT1 peptide were taken up and routed to mitochondria in cultured PC cells. NWs functionalized with linTT1 peptide in tandem with a pro-apoptotic [D(KLAKLAK)2] peptide showed p32-dependent cytotoxicity in MKN-45P, SKOV-3, and CT-26 cells. Upon IP administration in mice bearing MKN-45P, SKOV-3, and CT-26 tumors, linTT1-functionalized NWs showed robust homing and penetration into malignant lesions, whereas only a background accumulation was seen in control tissues. In tumors, the linTT1-NW accumulation was seen predominantly in CD31-positive blood vessels, in LYVE-1-positive lymphatic structures, and in CD11b-positive tumor macrophages. Experimental therapy of mice bearing peritoneal MKN-45P xenografts and CT-26 syngeneic tumors with IP linTT1-D(KLAKLAK)2-NWs resulted in significant reduction of weight of peritoneal tumors and significant decrease in the number of metastatic tumor nodules, whereas treatment with untargeted D(KLAKLAK)2-NWs had no effect. Our data show that targeting of p32 with linTT1 tumor-penetrating peptide improves tumor selectivity and antitumor efficacy of IP pro-apoptotic NWs. P32-directed intraperitoneal targeting of other anticancer agents and nanoparticles using peptides and other affinity ligands may represent a general strategy to increase their therapeutic index.


Assuntos
Proteínas de Transporte/metabolismo , Sistemas de Liberação de Medicamentos , Proteínas Mitocondriais/metabolismo , Nanoestruturas/administração & dosagem , Peptídeos/administração & dosagem , Neoplasias Peritoneais/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanoestruturas/uso terapêutico , Peptídeos/uso terapêutico , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/patologia , Carga Tumoral/efeitos dos fármacos
13.
Nano Lett ; 17(3): 1356-1364, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28178415

RESUMO

Antiangiogenic and vascular disrupting compounds have shown promise in cancer therapy, but tend to be only partially effective. We previously reported a potent theranostic nanosystem that was highly effective in glioblastoma and breast cancer mouse models, retarding tumor growth and producing some cures [ Agemy , L. et al. Proc. Natl. Acad. Sci. U.S.A. 2011 , 108 , 17450 - 17455 . Agemy , L. et al. Mol. Ther. 2013 , 21 , 2195 - 2204 .]. The nanosystem consists of iron oxide NPs ("nanoworms") coated with a composite peptide with tumor-homing and pro-apoptotic domains. The homing component targets tumor vessels by binding to p32/gC1qR at the surface or tumor endothelial cells. We sought to further improve the efficacy nanosystem by searching for an optimally effective homing peptide that would also incorporate a tumor-penetrating function. To this effect, we tested a panel of candidate p32 binding peptides with a sequence motif that conveys tumor-penetrating activity (CendR motif). We identified a peptide designated as Linear TT1 (Lin TT1) (sequence: AKRGARSTA) as most effective in causing tumor homing and penetration of the nanosystem. This peptide had the lowest affinity for p32 among the peptides tested. The low affinity may have moderated the avidity effect from the multivalent presentation on nanoparticles (NPs), such that the NPs avoid getting trapped by the so-called "binding-site barrier", which can hinder tissue penetration of compounds with a high affinity for their receptors. Treatment of breast cancer mice with the LinTT1 nanosystem showed greatly improved efficacy compared to the original system. These results identify a promising treatment modality and underscore the value of tumor penetration effect in improving the efficacy tumor treatment.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/uso terapêutico , Peptídeos/uso terapêutico , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Camundongos , Nanomedicina , Nanopartículas/química , Nanopartículas/metabolismo , Peptídeos/química , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA