Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Drug Resist ; 30(6): 273-278, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593463

RESUMO

This study examines the genetic contexts and evolutionary steps responsible for the formation of the widely spread transposon Tn6925 carrying blaTEM and aacC2e, which confers resistance to beta-lactam and aminoglycoside antibiotics in Gram-negative bacteria. The blaTEM-1 and aacC2e genes were found in several transposons. They were first observed within an IS26 bounded 3.7 kb transposon (Tn6925) on several Acinetobacter baumannii plasmids located within a 4.7 kb dif module. Truncated and expanded variations of Tn6925 were found across other A. baumannii plasmids, as well as in other Gram-negative bacteria (including Vibrio cholerae). Moreover, blaTEM-1 and aacC2e were in much larger resistance-heavy transposons including the ISAba1-bounded 24.6 kb (here called Tn6927), found in an A. baumannii chromosome. A novel ISKpn12-bounded transposon was also observed to contain blaTEM and aacC2e which was found interrupting Tn5393 along with an IS26 pseudo-compound transposon to form a 24.9 kb resistance island in an Acinetobacter pittii plasmid. Multiple mobile genetic elements are involved in the formation of transposon structures that circulate blaTEM and aacC2e. Among these, IS26 and ISAba1 appear to have played a major role in the formation and spread of these elements in the Acinetobacter species.


Assuntos
Acinetobacter baumannii , Aminoglicosídeos , Antibacterianos , Elementos de DNA Transponíveis , Plasmídeos , Elementos de DNA Transponíveis/genética , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Plasmídeos/genética , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , beta-Lactamases/genética , Acinetobacter/genética , Acinetobacter/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Resistência beta-Lactâmica/genética , beta-Lactamas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Bactérias/genética
2.
Appl Environ Microbiol ; 90(2): e0165423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38206028

RESUMO

Acinetobacter baumannii, an important pathogen known for its widespread antibiotic resistance, has been the focus of extensive research within its genus, primarily involving clinical isolates. Consequently, data on environmental A. baumannii and other Acinetobacter species remain limited. Here, we utilized Illumina and Nanopore sequencing to analyze the genomes of 10 Acinetobacter isolates representing 6 different species sourced from aquatic environments in South Australia. All 10 isolates were phylogenetically distinct compared to clinical and other non-clinical Acinetobacter strains, often tens of thousands of single-nucleotide polymorphisms from their nearest neighbors. Despite the genetic divergence, we identified pdif modules (sections of mobilized DNA) carrying clinically important antimicrobial resistance genes in species other than A. baumannii, including carbapenemase oxa58, tetracycline resistance gene tet(39), and macrolide resistance genes msr(E)-mph(E). These pdif modules were located on plasmids with high sequence identity to those circulating in globally distributed A. baumannii ST1 and ST2 clones. The environmental A. baumannii isolate characterized here (SAAb472; ST350) did not possess any native plasmids; however, it could capture two clinically important plasmids (pRAY and pACICU2) with high transfer frequencies. Furthermore, A. baumannii SAAb472 possessed virulence genes and a capsular polysaccharide type analogous to clinical strains. Our findings highlight the potential for environmental Acinetobacter species to acquire and disseminate clinically important antimicrobial resistance genes, underscoring the need for further research into the ecology and evolution of this important genus.IMPORTANCEAntimicrobial resistance (AMR) is a global threat to human, animal, and environmental health. Studying AMR in environmental bacteria is crucial to understand the emergence and dissemination of resistance genes and pathogens, and to identify potential reservoirs and transmission routes. This study provides novel insights into the genomic diversity and AMR potential of environmental Acinetobacter species. By comparing the genomes of aquatic Acinetobacter isolates with clinical and non-clinical strains, we revealed that they are highly divergent yet carry pdif modules that encode resistance to antibiotics commonly used in clinical settings. We also demonstrated that an environmental A. baumannii isolate can acquire clinically relevant plasmids and carries virulence factors similar to those of hospital-associated strains. These findings suggest that environmental Acinetobacter species may serve as reservoirs and vectors of clinically important genes. Consequently, further research is warranted to comprehensively understand the ecology and evolution of this genus.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Anti-Infecciosos , Animais , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Acinetobacter/microbiologia , Macrolídeos , Plasmídeos/genética , Acinetobacter baumannii/genética , Genômica , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
3.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37171842

RESUMO

Acinetobacter baumannii is an important opportunistic pathogen known for its high levels of resistance to many antibiotics, particularly those considered last resorts such as colistin and carbapenems. Plasmids of this organism are increasingly associated with the spread of clinically important antibiotic resistance genes. Although A. baumannii is a ubiquitous organism, to date, most of the focus has been on studying strains recovered from clinical samples ignoring those isolated in the environment (soil, water, food, etc.). Here, we analysed the genetic structures of eight novel plasmids carried by an environmental colistin-resistant A. baumannii (strain E-072658) recovered in a recycled fibre pulp in a paper mill in Finland. It was shown that E-072658 carries a new variant of the mcr-4 colistin resistance gene (mcr-4.7) in a novel Tn3-family transposon (called Tn6926) carried by a novel plasmid p8E072658. E-072658 is also resistant to sulphonamide compounds; consistent with this, the sul2 sulphonamide resistance gene was found in a pdif module. E-072658 also carries six additional plasmids with no antibiotic resistance genes, but they contained several pdif modules shared with plasmids carried by clinical strains. Detailed analysis of the genetic structure of all eight plasmids carried by E-072658 showed a complex evolutionary history revealing genetic exchange events within the genus Acinetobacter beyond the clinical or environmental origin of the strains. This work provides evidence that environmental strains might act as a source for some of the clinically significant antibiotic resistance genes.


Assuntos
Acinetobacter baumannii , Colistina , Colistina/farmacologia , Acinetobacter baumannii/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Sulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA