Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 506(2): 323-329, 2018 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-30309655

RESUMO

The actin cytoskeleton has two faces. One side provides the relatively stable scaffold to maintain the shape of cell cortex fit to the organs. The other side rapidly changes morphology in response to extracellular stimuli including chemical signal and physical strain. Our series of studies employing single-molecule speckle analysis of actin have revealed diverse F-actin lifetimes spanning a range of seconds to minutes in live cells. The dynamic part of the actin turnover is tightly coupled with actin nucleation activities of formin homology proteins (formins), which serve as rapid and efficient F-actin restoration mechanisms in cells under physical stress. More recently, our two studies revealed stabilization of F-actin either by actomyosin contractile force or by helical rotation of processively-actin polymerizing diaphanous-related formin mDia1. These findings quantitatively explain our proposed anti-mechanostress cascade in that G-actin released from F-actin upon loss of tension triggers frequent nucleation and subsequent fast elongation of F-actin by formins. This formin-restored F-actin may become specifically stabilized over long distance by helical polymerization-mediated filament untwisting. In this review, we discuss how and to what extent formins-mediated F-actin restoration might confer mechanostress resistance to the cell. We also give thought to the possible involvement of helical polymerization-mediated filament untwisting in the formation of diverse actin architectures including chirality control.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Fetais/metabolismo , Mecanotransdução Celular , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Actinas/química , Actinas/genética , Actomiosina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Fenômenos Biomecânicos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Proteínas Fetais/genética , Forminas , Regulação da Expressão Gênica , Humanos , Cinética , Proteínas dos Microfilamentos/genética , Proteínas Nucleares/genética , Polimerização , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
PLoS One ; 8(12): e82590, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358210

RESUMO

The lipid mediator sphingosine 1-phosphate (S1P) regulates a wide range of cellular activities, including vascular maturation, angiogenesis, and immune-cell trafficking. Among the five known receptors for S1P (S1PR1-S1PR5), S1PR1 is a critical regulator of lymphocyte trafficking: its signaling is required for lymphocyte egress from lymphoid organs, while its down-modulation by agonist-induced internalization is a prerequisite for lymphocyte entry into lymphoid organs from the bloodstream. Despite the importance of S1PR1 down-regulation in determining lymphocyte behavior, the molecular mechanism of its internalization in lymphocytes has not been defined. Here we show that agonist-induced S1PR1 internalization in T cells occurs via clathrin-mediated endocytosis and is regulated by moesin, an ezrin-radixin-moesin (ERM) family member. In S1P-stimulated T cells, S1PR1 relocalized within clathrin-coated vesicles (CCVs) and early endosomes, and S1PR1 internalization was blocked when clathrin was pharmacologically inhibited. Stimulating moesin-deficient T cells with S1P failed to induce S1PR1 internalization and CCV formation. Furthermore, treating moesin-deficient mice with FTY720, an S1P receptor agonist known to internalize S1PR1, caused delayed lymphopenia, and lymphocytes isolated from FTY720-treated moesin-deficient mice still responded to S1P ex vivo in chemotaxis assays. These results reveal a novel role for moesin in regulating clathrin-dependent S1PR1 internalization through CCV formation.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Endocitose/genética , Proteínas dos Microfilamentos/fisiologia , Receptores de Lisoesfingolipídeo/metabolismo , Animais , Células Cultivadas , Quimiotaxia de Leucócito/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Esfingosina-1-Fosfato
3.
PLoS One ; 6(9): e25465, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980468

RESUMO

During development of the central nervous system, the apical-basal polarity of neuroepithelial cells is critical for homeostasis of proliferation and differentiation of neural stem cells. While adherens junctions at the apical surface of neuroepithelial cells are important for maintaining the polarity, the molecular mechanism regulating integrity of these adherens junctions remains largely unknown. Given the importance of actin cytoskeleton in adherens junctions, we have analyzed the role of mDia, an actin nucleator and a Rho effector, in the integrity of the apical adherens junction. Here we show that mDia1 and mDia3 are expressed in the developing brain, and that mDia3 is concentrated in the apical surface of neuroepithelium. Mice deficient in both mDia1 and mDia3 develop periventricular dysplastic mass widespread throughout the developing brain, where neuroepithelial cell polarity is impaired with attenuated apical actin belts and loss of apical adherens junctions. In addition, electron microscopic analysis revealed abnormal shrinkage and apical membrane bulging of neuroepithelial cells in the remaining areas. Furthermore, perturbation of Rho, but not that of ROCK, causes loss of the apical actin belt and adherens junctions similarly to mDia-deficient mice. These results suggest that actin cytoskeleton regulated by Rho-mDia pathway is critical for the integrity of the adherens junctions and the polarity of neuroepithelial cells, and that loss of this signaling induces aberrant, ectopic proliferation and differentiation of neural stem cells.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Ventrículos Cerebrais/anormalidades , Ventrículos Cerebrais/patologia , Células Neuroepiteliais/metabolismo , Células Neuroepiteliais/patologia , Junções Aderentes/metabolismo , Junções Aderentes/patologia , Animais , Proteínas de Transporte/genética , Diferenciação Celular/genética , Polaridade Celular/genética , Proliferação de Células , Ventrículos Cerebrais/embriologia , Ventrículos Cerebrais/metabolismo , Líquido Cefalorraquidiano/fisiologia , Feminino , Forminas , Deleção de Genes , Hidrocefalia/etiologia , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Masculino , Camundongos , Células NIH 3T3 , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA