Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396712

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is one of the most common causes of childhood disability. Hypothermic therapy is currently the only approved neuroprotective approach. However, early diagnosis of HIE can be challenging, especially in the first hours after birth when the decision to use hypothermic therapy is critical. Distinguishing HIE from other neonatal conditions, such as sepsis, becomes a significant problem in diagnosis. This study explored the utility of a metabolomic-based approach employing the NeoBase 2 MSMS kit to diagnose HIE using dry blood stains in a Rice-Vannucci model of HIE in rats. We evaluated the diagnostic fidelity of this approach in a range between 3 and 6 h after the onset of HIE, including in the context of systemic inflammation and concomitant hypothermic therapy. Discriminant analysis revealed several metabolite patterns associated with HIE. A logistic regression model using glycine levels achieved high diagnostic fidelity with areas under the receiver operating characteristic curve of 0.94 at 3 h and 0.96 at 6 h after the onset of HIE. In addition, orthogonal partial least squares discriminant analysis, which included five metabolites, achieved 100% sensitivity and 80% specificity within 3 h of HIE. These results highlight the significant potential of the NeoBase 2 MSMS kit for the early diagnosis of HIE and could improve patient management and outcomes in this serious illness.


Assuntos
Hipóxia-Isquemia Encefálica , Humanos , Ratos , Animais , Hipóxia-Isquemia Encefálica/metabolismo , Metabolômica/métodos , Biomarcadores
2.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069155

RESUMO

Intrauterine growth restriction (IUGR) remains a significant concern in modern obstetrics, linked to high neonatal health problems and even death, as well as childhood disability, affecting adult quality of life. The role of maternal and fetus adaptation during adverse pregnancy is still not completely understood. This study aimed to investigate the disturbance in biological processes associated with isolated IUGR via blood plasma proteomics. The levels of 125 maternal plasma proteins were quantified by liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) with corresponding stable isotope-labeled peptide standards (SIS). Thirteen potential markers of IUGR (Gelsolin, Alpha-2-macroglobulin, Apolipoprotein A-IV, Apolipoprotein B-100, Apolipoprotein(a), Adiponectin, Complement C5, Apolipoprotein D, Alpha-1B-glycoprotein, Serum albumin, Fibronectin, Glutathione peroxidase 3, Lipopolysaccharide-binding protein) were found to be inter-connected in a protein-protein network. These proteins are involved in plasma lipoprotein assembly, remodeling, and clearance; lipid metabolism, especially cholesterol and phospholipids; hemostasis, including platelet degranulation; and immune system regulation. Additionally, 18 proteins were specific to a particular type of IUGR (early or late). Distinct patterns in the coagulation and fibrinolysis systems were observed between isolated early- and late-onset IUGR. Our findings highlight the complex interplay of immune and coagulation factors in IUGR and the differences between early- and late-onset IUGR and other placenta-related conditions like PE. Understanding these mechanisms is crucial for developing targeted interventions and improving outcomes for pregnancies affected by IUGR.


Assuntos
Retardo do Crescimento Fetal , Proteômica , Gravidez , Adulto , Recém-Nascido , Feminino , Humanos , Criança , Retardo do Crescimento Fetal/metabolismo , Qualidade de Vida , Feto/metabolismo , Placenta/metabolismo
3.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762087

RESUMO

The COVID-19 pandemic has raised questions about indirect impact in pregnant women on the development of their future children. Investigating the characteristics of lipid metabolism in the "mother-placenta-fetus" system can give information about the pathophysiology of COVID-19 infection during pregnancy. A total of 234 women were included in study. Maternal plasma, cord blood, and amniotic fluid lipidome were analyzed using HPLC-MS/MS. Differences in lipid profile were searched by Mann-Whitney and Kruskall-Wallis test, and diagnostic model based on logistic regression were built by AIC. Elevated levels of lysophospholipids, triglycerides, sphingomyelins, and oxidized lipids were registered in patients' maternal and cord plasma after COVID-19 infection. An increase in maternal plasma sphingomyelins and oxidized lipids was observed in cases of infection during the second trimester. In amniotic fluid, compared to the control group, nine lipids were reduced and six were elevated. Levels of phosphoglycerides, lysophosphoglycerides, and phosphatidylinositols decreased during infection in the second and third trimesters of pregnancy. A health diagnostic model for newborns based on maternal plasma was developed for each group and exhibited good diagnostic value (AUC > 0.85). Maternal and cord plasma's lipidome changes during delivery, which are associated with COVID-19 infection during pregnancy, are synergistic. The most significant disturbances occur with infections in the second trimester of pregnancy.


Assuntos
COVID-19 , Distrofias de Cones e Bastonetes , Recém-Nascido , Gravidez , Criança , Humanos , Feminino , Saúde do Lactente , Metabolismo dos Lipídeos , Pandemias , Esfingomielinas , Espectrometria de Massas em Tandem , Líquido Amniótico , Mães
4.
Biomedicines ; 11(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37509426

RESUMO

Metastasis is a serious and often life-threatening condition, representing the leading cause of death among women with breast cancer (BC). Although the current clinical classification of BC is well-established, the addition of minimally invasive laboratory tests based on peripheral blood biomarkers that reflect pathological changes in the body is of utmost importance. In the current study, the serum proteome and lipidome profiles for 50 BC patients with (25) and without (25) metastasis were studied. Targeted proteomic analysis for concertation measurements of 125 proteins in the serum was performed via liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) using the BAK 125 kit (MRM Proteomics Inc., Victoria, BC, Canada). Untargeted label-free lipidomic analysis was performed using liquid chromatography coupled to tandem mass-spectrometry (LC-MS/MS), in both positive and negative ion modes. Finally, 87 serum proteins and 295 lipids were quantified and showed a moderate correlation with tumor grade, histological and biological subtypes, and the number of lymph node metastases. Two highly accurate classifiers that enabled distinguishing between metastatic and non-metastatic BC were developed based on proteomic (accuracy 90%) and lipidomic (accuracy 80%) features. The best classifier (91% sensitivity, 89% specificity, AUC = 0.92) for BC metastasis diagnostics was based on logistic regression and the serum levels of 11 proteins: alpha-2-macroglobulin, coagulation factor XII, adiponectin, leucine-rich alpha-2-glycoprotein, alpha-2-HS-glycoprotein, Ig mu chain C region, apolipoprotein C-IV, carbonic anhydrase 1, apolipoprotein A-II, apolipoprotein C-II and alpha-1-acid glycoprotein 1.

5.
Front Immunol ; 14: 1332043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259478

RESUMO

Introduction: Immunometabolism is essential factor of tumor progression, and tumor-associated macrophages are characterized by substantial changes in their metabolic status. In this study for the first time, we applied targeted amino acid LC-MS/MS analysis to compare amino acid metabolism of circulating monocytes isolated from patients with breast, ovarian, lung, and colorectal cancer. Methods: Monocyte metabolomics was analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/ MS) analysis of amino acid extracts. The targeted analysis of 26 amino acids was conducted by LCMS/MS on an Agilent 6460 triple quadrupole mass spectrometer equipped with an electrospray ionization source and an Agilent 1260 II liquid chromatograph. Results: Comparison of monocytes of cancer patients with monocytes of healthy control individuals demonstrated that in breast cancer most pronounced changes were identified for tryptophan (AUC = 0.76); for ovarian cancer, aminobutyric acid was significantly elevated (AUC= 1.00); for lung cancer significant changes we indented for citrulline (AUC = 0.70). In order to identify key amino acids that are characteristic for monocytes in specific cancer types, we compared each individual cancer with other 3 types of cancer. We found, that aspartic acid and citrulline are specific for monocytes of patients with colorectal cancer (p<0.001, FC = 1.40 and p=0.003, FC = 1.42 respectively). Citrulline, sarcosine and glutamic acid are ovarian cancer-specific amino acids (p = 0.003, FC = 0.78, p = 0.003, FC = 0.62, p = 0.02, FC = 0.78 respectively). Glutamine, methionine and phenylalanine (p = 0.048, FC = 1.39. p = 0.03, FC = 1.27 and p = 0.02, FC = 1.41) are lung cancer-specific amino acids. Ornithine in monocytes demonstrated strong positive correlation (r = 0.63) with lymph node metastasis incidence in breast cancer patients. Methyl histidine and cysteine in monocytes had strong negative correlation with lymph node metastasis in ovarian cancer patients (r = -0.95 and r = -0.95 respectively). Arginine, citrulline and ornithine have strong negative correlation with tumor size (r = -0.78, citrulline) and lymph node metastasis (r = -0.63 for arginine and r = -0.66 for ornithine). Discussion: These alterations in monocyte amino acid metabolism can reflect the reaction of systemic innate immunity on the growing tumor. Our data indicate that this metabolic programming is cancer specific and can be inhibiting cancer progression. Cancer-specific differences in citrulline, as molecular link between metabolic pathways and epigenetic programing, provide new option for the development and validation of anti-cancer therapies using inhibitors of enzymes catalyzing citrullination.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Neoplasias Pulmonares , Neoplasias Ovarianas , Humanos , Feminino , Monócitos , Citrulina , Cromatografia Líquida , Metástase Linfática , Espectrometria de Massas em Tandem , Ornitina , Arginina , Pulmão
6.
Metabolites ; 12(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36144287

RESUMO

Cervical cancer is one of the most common cancers in women with pronounced stages of precancerous lesions. Accurate differential diagnosis of such lesions is one of the primary challenges of medical specialists, which is vital to improving patient survival. The aim of this study was to develop and test an algorithm for the differential diagnosis of cervical lesions based on lipid levels in scrapings from the cervical epithelium and cervicovaginal canal. The lipid composition of the samples was analyzed by high-performance chromato-mass spectrometry. Lipid markers were selected using the Mann-Whitney test with a cutoff value of 0.05 and by projections to latent structures discriminant analysis, where a projection threshold of one was chosen. The final selection of variables for binomial logistic regressions was carried out using the Akaike information criterion. As a result, a final neoplasia classification method, based on 20 logistic regression sub-models, has an accuracy of 79% for discrimination NILM/cervicitis/LSIL/HSIL/cancer. The model has a sensitivity of 83% and a specificity of 88% for discrimination of several lesions (HSIL and cancer). This allows us to discuss the prospective viability of further validation of the developed non-invasive method of differential diagnosis.

7.
Metabolites ; 12(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736434

RESUMO

A dramatic increase in cervical diseases associated with human papillomaviruses (HPV) in women of reproductive age has been observed over the past decades. An accurate differential diagnosis of the severity of cervical intraepithelial neoplasia and the choice of the optimal treatment requires the search for effective biomarkers with high diagnostic and prognostic value. The objective of this study was to introduce a method for rapid shotgun lipidomics to differentiate stages of HPV-associated cervix epithelium transformation. Tissue samples from 110 HPV-positive women with cervicitis (n = 30), low-grade squamous intraepithelial lesions (LSIL) (n = 30), high-grade squamous intraepithelial lesions (HSIL) (n = 30), and cervical cancers (n = 20) were obtained. The cervical epithelial tissue lipidome at different stages of cervix neoplastic transformation was studied by a shotgun label-free approach. It is based on electrospray ionization mass spectrometry (ESI-MS) data of a tissue extract. Lipidomic data were processed by the orthogonal projections to latent structures discriminant analysis (OPLS-DA) to build statistical models, differentiating stages of cervix transformation. Significant differences in the lipid profile between the lesion and surrounding tissues were revealed in chronic cervicitis, LSIL, HSIL, and cervical cancer. The lipids specific for HPV-induced cervical transformation mainly belong to glycerophospholipids: phosphatidylcholines, and phosphatidylethanolamines. The developed diagnostic OPLS-DA models were based on 23 marker lipids. More than 90% of these marker lipids positively correlated with the degree of cervix transformation. The algorithm was developed for the management of patients with HPV-associated diseases of the cervix, based on the panel of 23 lipids as a result. ESI-MS analysis of a lipid extract by direct injection through a loop, takes about 25 min (including preparation of the lipid extract), which is significantly less than the time required for the HPV test (several hours for hybrid capture and about an hour for PCR). This makes lipid mass spectrometric analysis a promising method for express diagnostics of HPV-associated neoplastic diseases of the cervix.

8.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613453

RESUMO

Follicular fluid is an important component of follicle growth and development. Negative effects of COVID-19 on follicular function are still open. The aim of this work was to study the features of the lipid profile of follicular fluid and evaluate the results of the in vitro fertilization (IVF) program in women after COVID-19 to identify biomarkers with prognostic potential. The study involved samples of follicular fluid collected from 237 women. Changes in the lipid composition of the follicular fluid of patients who underwent COVID-19 in mild and severe forms before entering the IVF program and women who did not have COVID-19 were studied by mass spectrometry. Several lipids were identified that significantly changed their level. On the basis of these findings, models were developed for predicting the threat of miscarriage in patients who had a severe course of COVID-19 and models for predicting the success of the IVF procedure, depending on the severity of COVID-19. Of practical interest is the possibility of using the developed predictive models in working with patients who have undergone COVID-19 before entering the IVF program. The results of the study suggest that the onset of pregnancy and its outcome after severe COVID-19 may be associated with changes in lipid metabolism in the follicular fluid.


Assuntos
COVID-19 , Líquido Folicular , Gravidez , Humanos , Feminino , Líquido Folicular/metabolismo , COVID-19/metabolismo , Folículo Ovariano , Fertilização in vitro/métodos , Lipídeos/análise
9.
Sci Rep ; 11(1): 11447, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075062

RESUMO

Uterine fibroids (UF) is the most common (about 70% cases) type of gynecological disease, with the recurrence rate varying from 11 to 40%. Because UF has no distinct symptomatology and is often asymptomatic, the specific and sensitive diagnosis of UF as well as the assessment for the probability of UF recurrence pose considerable challenge. The aim of this study was to characterize alterations in the lipid profile of tissues associated with the first-time diagnosed UF and recurrent uterine fibroids (RUF) and to explore the potential of mass spectrometry (MS) lipidomics analysis of blood plasma samples for the sensitive and specific determination of UF and RUF with low invasiveness of analysis. MS analysis of lipid levels in the myometrium tissues, fibroids tissues and blood plasma samples was carried out on 66 patients, including 35 patients with first-time diagnosed UF and 31 patients with RUF. The control group consisted of 15 patients who underwent surgical treatment for the intrauterine septum. Fibroids and myometrium tissue samples were analyzed using direct MS approach. Blood plasma samples were analyzed using high performance liquid chromatography hyphened with mass spectrometry (HPLC/MS). MS data were processed by discriminant analysis with projection into latent structures (OPLS-DA). Significant differences were found between the first-time UF, RUF and control group in the levels of lipids involved in the metabolism of glycerophospholipids, sphingolipids, lipids with an ether bond, triglycerides and fatty acids. Significant differences between the control group and the groups with UF and RUF were found in the blood plasma levels of cholesterol esters, triacylglycerols, (lyso) phosphatidylcholines and sphingomyelins. Significant differences between the UF and RUF groups were found in the blood plasma levels of cholesterol esters, phosphotidylcholines, sphingomyelins and triacylglycerols. Diagnostic models based on the selected differential lipids using logistic regression showed sensitivity and specificity of 88% and 86% for the diagnosis of first-time UF and 95% and 79% for RUF, accordingly. This study confirms the involvement of lipids in the pathogenesis of uterine fibroids. A diagnostically significant panel of differential lipid species has been identified for the diagnosis of UF and RUF by low-invasive blood plasma analysis. The developed diagnostic models demonstrated high potential for clinical use and further research in this direction.


Assuntos
Leiomioma/sangue , Lipídeos/sangue , Recidiva Local de Neoplasia/sangue , Neoplasias Uterinas/sangue , Adulto , Cromatografia Líquida de Alta Pressão , Feminino , Seguimentos , Humanos , Lipidômica , Espectrometria de Massas , Pessoa de Meia-Idade
10.
Anal Bioanal Chem ; 413(13): 3479-3486, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33760933

RESUMO

Data normalization is an essential part of a large-scale untargeted mass spectrometry metabolomics analysis. Autoscaling, Pareto scaling, range scaling, and level scaling methods for liquid chromatography-mass spectrometry data processing were compared with the most common normalization methods, including quantile normalization, probabilistic quotient normalization, and variance stabilizing normalization. These methods were tested on eight datasets from various clinical studies. The efficiency of the data normalization was assessed by the distance between clusters corresponding to batches and the distance between clusters corresponding to clinical groups in the space of principal components, as well as by the number of features with a pairwise statistically significant difference between the batches and the number of features with a pairwise statistically significant difference between clinical groups. Autoscaling demonstrated the most effective reduction in interbatch variation and can be preferable to probabilistic quotient or quantile normalization in liquid chromatography-mass spectrometry data.

11.
J Mass Spectrom ; 56(3): e4702, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33629457

RESUMO

Hundreds of compounds are detected during untargeted lipidomics analysis. The potential efficacy of lipids as disease markers makes it important to select the species with the most discriminative potential. Datasets based on a selected class of lipids allow the development of a high-quality diagnostic model using orthogonal projection on latent structure. The combination of selection of lipids by variable importance in projection and by Akaike information criteria makes it possible to build a reliable diagnostic model based on logistic regression.


Assuntos
Lipidômica/métodos , Lipídeos/análise , Espectrometria de Massas/métodos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Humanos , Lipídeos/sangue , Modelos Logísticos , Neoplasias/sangue , Neoplasias/diagnóstico
12.
Int J Mol Sci ; 21(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604966

RESUMO

Current methods for the intraoperative determination of breast cancer margins commonly suffer from the insufficient accuracy, specificity and/or low speed of analysis, increasing the time and cost of operation as well the risk of cancer recurrence. The purpose of this study is to develop a method for the rapid and accurate determination of breast cancer margins using direct molecular profiling by mass spectrometry (MS). Direct molecular fingerprinting of tiny pieces of breast tissue (approximately 1 × 1 × 1 mm) is performed using a home-built tissue spray ionization source installed on a Maxis Impact quadrupole time-of-flight mass spectrometer (qTOF MS) (Bruker Daltonics, Hamburg, Germany). Statistical analysis of MS data from 50 samples of both normal and cancer tissue (from 25 patients) was performed using orthogonal projections onto latent structures discriminant analysis (OPLS-DA). Additionally, the results of OPLS classification of new 19 pieces of two tissue samples were compared with the results of histological analysis performed on the same tissues samples. The average time of analysis for one sample was about 5 min. Positive and negative ionization modes are used to provide complementary information and to find out the most informative method for a breast tissue classification. The analysis provides information on 11 lipid classes. OPLS-DA models are created for the classification of normal and cancer tissue based on the various datasets: All mass spectrometric peaks over 300 counts; peaks with a statistically significant difference of intensity determined by the Mann-Whitney U-test (p < 0.05); peaks identified as lipids; both identified and significantly different peaks. The highest values of Q2 have models built on all MS peaks and on significantly different peaks. While such models are useful for classification itself, they are of less value for building explanatory mechanisms of pathophysiology and providing a pathway analysis. Models based on identified peaks are preferable from this point of view. Results obtained by OPLS-DA classification of the tissue spray MS data of a new sample set (n = 19) revealed 100% sensitivity and specificity when compared to histological analysis, the "gold" standard for tissue classification. "All peaks" and "significantly different peaks" datasets in the positive ion mode were ideal for breast cancer tissue classification. Our results indicate the potential of tissue spray mass spectrometry for rapid, accurate and intraoperative diagnostics of breast cancer tissue as a means to reduce surgical intervention.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/patologia , Lipidômica/métodos , Lipídeos/análise , Margens de Excisão , Espectrometria de Massas por Ionização por Electrospray/métodos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/cirurgia , Feminino , Humanos
13.
J Mass Spectrom ; 55(1): e4457, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31661719

RESUMO

The mass spectrometry-based molecular profiling can be used for better differentiation between normal and cancer tissues and for the detection of neoplastic transformation, which is of great importance for diagnostics of a pathology, prognosis of its evolution trend, and development of a treatment strategy. The aim of the present study is the evaluation of tissue classification approaches based on various data sets derived from the molecular profile of the organic solvent extracts of a tissue. A set of possibilities are considered for the orthogonal projections to latent structures discriminant analysis: all mass spectrometric peaks over 300 counts threshold, subset of peaks selected by ranking with support vector machine algorithm, peaks selected by random forest algorithm, peaks with the statistically significant difference of the intensity determined by the Mann-Whitney U test, peaks identified as lipids, and both identified and significantly different peaks. The best predictive potential is obtained for OPLS-DA model built on nonpolar glycerolipids (Q2 = 0.64, area under curve [AUC] = 0.95); the second one is OPLS-DA model with lipid peaks selected by random forest algorithm (Q2 = 0.58, AUC = 0.87). Moreover, models based on particular molecular classes are more preferable from biological point of view, resulting in new explanatory mechanisms of pathophysiology and providing a pathway analysis. Another promising features for OPLS-DA modeling are phosphatidylethanolamines (Q2 = 0.48, AUC = 0.86).


Assuntos
Lipidômica/métodos , Lipídeos/análise , Neoplasias/química , Extratos de Tecidos/análise , Algoritmos , Biópsia/métodos , Análise Discriminante , Feminino , Humanos , Análise Multivariada , Espectrometria de Massas em Tandem , Neoplasias do Colo do Útero/química
14.
Molecules ; 24(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443190

RESUMO

Real-time molecular navigation of tissue surgeries is an important goal at present. Combination of electrosurgical units and mass spectrometry (MS) to perform accurate molecular visualization of biological tissues has been pursued by many research groups. Determination of molecular tissue composition at a particular location by surgical smoke analysis is now of increasing interest for clinical use. However, molecular analysis of surgical smoke is commonly lacking molecular specificity and is associated with significant carbonization and chemical contamination, which are mainly related to the high temperature of smoke at which many molecules become unstable. Unlike traditional electrosurgical tools, low-temperature electrosurgical units allow tissue dissection without substantial heating. Here, we show that low-temperature electrosurgical units can be used for desorption of molecules from biological tissues without thermal degradation. The use of extractive electrospray ionization technique for the ionization of desorbed molecules allowed us to obtain mass spectra of healthy and pathological tissues with high degree of differentiation. Overall, the data indicate that the described approach has potential for intraoperative use.


Assuntos
Biomarcadores , Eletrocirurgia , Espectrometria de Massas por Ionização por Electrospray , Biomarcadores/análise , Eletrocirurgia/métodos , Humanos , Especificidade de Órgãos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/métodos
15.
Orthop J Sports Med ; 7(11): 2325967119885370, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32010730

RESUMO

BACKGROUND: Currently, there are few data on the association between participation in soccer and the condition of the knee joints in adult professional players. HYPOTHESIS: A high percentage of professional soccer players will have asymptomatic intra-articular changes of the knee. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: The condition of the intra-articular structures (osteophytes, cartilage, and menisci) in 94 knee joints of 47 adult professional soccer players (mean ± SD age, 25.7 ± 4.6 years; body mass index, 22.8 ± 1.4 kg/m2) was analyzed. A 1.5-T magnetic resonance imaging scanner was used to perform the imaging, and the anonymized data were analyzed by 2 experienced radiologists. RESULTS: Cartilage of both knee joints was affected in 97.9% of soccer players. Meniscal lesions were detected in 97.8% of joints, affecting both joints in 93.6% of athletes. Grade 2 cartilage lesions were the most prevalent (36%-60% depending on the lesion site), and grade 4 lesions were detected in 12.7% of joints. The medial femoral condyle and medial tibial plateau were most frequently affected by cartilage lesions (85.1%). Among meniscal lesions, grade 2 lesions were the most prevalent, being detected in 71% of the cases. Grade 3 lesions were detected in 13.8% of the joints. The posterior horn of the lateral meniscus was the most common site of meniscal lesions (affected in 95.7% of the joints). Osteophytes were detected in 4.2% of joints. CONCLUSION: The prevalence of asymptomatic cartilage and meniscal lesions in the knees of adult professional soccer players is extremely high and is not associated with the reduction of sports involvement. This research should promote the correct interpretation of magnetic resonance imaging data obtained from soccer players with acute trauma and the reduction of the number of unwarranted surgical procedures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA