Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 20(7): 1035-1046, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35298000

RESUMO

Expression of the fusion oncoprotein EWS/FLI causes Ewing sarcoma, an aggressive pediatric tumor characterized by widespread epigenetic deregulation. These epigenetic changes are targeted by novel lysine-specific demethylase-1 (LSD1) inhibitors, which are currently in early-phase clinical trials. Single-agent-targeted therapy often induces resistance, and successful clinical development requires knowledge of resistance mechanisms, enabling the design of effective combination strategies. Here, we used a genome-scale CRISPR-Cas9 loss-of-function screen to identify genes whose knockout (KO) conferred resistance to the LSD1 inhibitor SP-2509 in Ewing sarcoma cell lines. Multiple genes required for mitochondrial electron transport chain (ETC) complexes III and IV function were hits in our screen. We validated this finding using genetic and chemical approaches, including CRISPR KO, ETC inhibitors, and mitochondrial depletion. Further global transcriptional profiling revealed that altered complex III/IV function disrupted the oncogenic program mediated by EWS/FLI and LSD1 and blunted the transcriptomic response to SP-2509. IMPLICATIONS: These findings demonstrate that mitochondrial dysfunction modulates SP-2509 efficacy and suggest that new therapeutic strategies combining LSD1 with agents that prevent mitochondrial dysfunction may benefit patients with this aggressive malignancy.


Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Criança , Resistência a Medicamentos , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
2.
Commun Biol ; 2: 469, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31872074

RESUMO

Emtricitabine (FTC) and lamivudine (3TC), containing an oxathiolane ring with unnatural (-)-stereochemistry, are widely used nucleoside reverse transcriptase inhibitors (NRTIs) in anti-HIV therapy. Treatment with FTC or 3TC primarily selects for the HIV-1 RT M184V/I resistance mutations. Here we provide a comprehensive kinetic and structural basis for inhibiting HIV-1 RT by (-)-FTC-TP and (-)-3TC-TP and drug resistance by M184V. (-)-FTC-TP and (-)-3TC-TP have higher binding affinities (1/Kd) for wild-type RT but slower incorporation rates than dCTP. HIV-1 RT ternary crystal structures with (-)-FTC-TP and (-)-3TC-TP corroborate kinetic results demonstrating that their oxathiolane sulfur orients toward the DNA primer 3'-terminus and their triphosphate exists in two different binding conformations. M184V RT displays greater (>200-fold) Kd for the L-nucleotides and moderately higher (>9-fold) Kd for the D-isomers compared to dCTP. The M184V RT structure illustrates how the mutation repositions the oxathiolane of (-)-FTC-TP and shifts its triphosphate into a non-productive conformation.


Assuntos
Farmacorresistência Viral , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Nucleotídeos/química , Inibidores da Transcriptase Reversa/química , Alelos , Substituição de Aminoácidos , Bases de Dados Genéticas , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Humanos , Testes de Sensibilidade Microbiana , Mutação , Nucleotídeos/farmacologia , Inibidores da Transcriptase Reversa/farmacologia
3.
Chem Res Toxicol ; 32(8): 1699-1706, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31286773

RESUMO

3-Nitrobenzanthrone (3-NBA) is a byproduct of diesel exhaust and is highly present in industrial and populated areas. Inhalation of 3-NBA results in formation of N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA), a bulky DNA lesion that is of concern due to its mutagenic and carcinogenic potential. If dGC8-N-ABA is not bypassed during genomic replication, the lesion can stall cellular DNA replication machinery, leading to senescence or apoptosis. We have previously used running start assays to demonstrate that human DNA polymerases eta (hPolη) and kappa (hPolκ) are able to catalyze translesion DNA synthesis (TLS) across a site-specifically placed dGC8-N-ABA in a DNA template. Consistently, gene knockdown of hPolη and hPolκ in HEK293T cells reduces the efficiency of TLS across dGC8-N-ABA by ∼25 and ∼30%, respectively. Here, we kinetically investigated why hPolκ paused when bypassing and extending from dGC8-N-ABA. Our kinetic data show that correct dCTP incorporation efficiency of hPolκ dropped by 116-fold when opposite dGC8-N-ABA relative to undamaged dG, leading to hPolκ pausing at the lesion site observed in the running start assays. The already low nucleotide incorporation fidelity of hPolκ was further decreased by 10-fold during lesion bypass, and thus, incorrect nucleotides, especially dATP, were incorporated opposite dGC8-N-ABA with comparable efficiencies as correct dCTP. With regard to the dGC8-N-ABA bypass product extension step, hPolκ incorporated correct dGTP onto the damaged DNA substrate with a 786-fold lower efficiency than onto the corresponding undamaged DNA substrate, which resulted in hPolκ pausing at the site in the running start assays. Furthermore, hPolκ extended the primer-terminal matched base pair dC:dGC8-N-ABA with a 100-1000-fold lower fidelity than it extended the undamaged dC:dG base pair. Together, our kinetic results strongly indicate that hPolκ was error-prone during TLS of dGC8-N-ABA.


Assuntos
Benzo(a)Antracenos/metabolismo , Biocatálise , DNA Polimerase Dirigida por DNA/metabolismo , Benzo(a)Antracenos/química , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/deficiência , DNA Polimerase Dirigida por DNA/genética , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular
4.
DNA Repair (Amst) ; 49: 51-59, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27989484

RESUMO

Human PrimPol is a recently discovered bifunctional enzyme that displays DNA template-directed primase and polymerase activities. PrimPol has been implicated in nuclear and mitochondrial DNA replication fork progression and restart as well as DNA lesion bypass. Published evidence suggests that PrimPol is a Mn2+-dependent enzyme as it shows significantly improved primase and polymerase activities when binding Mn2+, rather than Mg2+, as a divalent metal ion cofactor. Consistently, our fluorescence anisotropy assays determined that PrimPol binds to a primer/template DNA substrate with affinities of 29 and 979nM in the presence of Mn2+ and Mg2+, respectively. Our pre-steady-state kinetic analysis revealed that PrimPol incorporates correct dNTPs with 100-fold higher efficiency with Mn2+ than with Mg2+. Notably, the substitution fidelity of PrimPol in the presence of Mn2+ was determined to be in the range of 3.4×10-2 to 3.8×10-1, indicating that PrimPol is an error-prone polymerase. Furthermore, we kinetically determined the sugar selectivity of PrimPol to be 57-1800 with Mn2+ and 150-4500 with Mg2+, and found that PrimPol was able to incorporate the triphosphates of two anticancer drugs (cytarabine and gemcitabine), but not two antiviral drugs (emtricitabine and lamivudine).


Assuntos
Coenzimas/metabolismo , DNA Primase/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Magnésio/metabolismo , Manganês/metabolismo , Enzimas Multifuncionais/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Antivirais/metabolismo , Antivirais/uso terapêutico , Arabinofuranosilcitosina Trifosfato/metabolismo , Arabinofuranosilcitosina Trifosfato/uso terapêutico , Cátions Bivalentes/metabolismo , Citidina Trifosfato/análogos & derivados , Citidina Trifosfato/metabolismo , Citidina Trifosfato/uso terapêutico , Desoxirribonucleotídeos/metabolismo , Didesoxinucleotídeos/metabolismo , Didesoxinucleotídeos/uso terapêutico , Emtricitabina/análogos & derivados , Emtricitabina/metabolismo , Emtricitabina/uso terapêutico , Humanos , Cinética , Lamivudina/análogos & derivados , Lamivudina/metabolismo , Lamivudina/uso terapêutico
5.
DNA Repair (Amst) ; 46: 20-28, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27612622

RESUMO

3-Nitrobenzanthrone (3-NBA), a byproduct of diesel exhaust, is highly present in the environment and poses a significant health risk. Exposure to 3-NBA results in formation of N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA), a bulky DNA lesion that is of particular importance due to its mutagenic and carcinogenic potential. If not repaired or bypassed during genomic replication, dGC8-N-ABA can stall replication forks, leading to senescence and cell death. Here we used pre-steady-state kinetic methods to determine which of the four human Y-family DNA polymerases (hPolη, hPolκ, hPolι, or hRev1) are able to catalyze translesion synthesis of dGC8-N-ABAin vitro. Our studies demonstrated that hPolη and hPolκ most efficiently bypassed a site-specifically placed dGC8-N-ABA lesion, making them good candidates for catalyzing translesion synthesis (TLS) of this bulky lesion in vivo. Consistently, our publication (Biochemistry 53, 5323-31) in 2014 has shown that small interfering RNA-mediated knockdown of hPolη and hPolκ in HEK293T cells significantly reduces the efficiency of TLS of dGC8-N-ABA. In contrast, hPolι and hRev1 were severely stalled by dGC8-N-ABA and their potential role in vivo was discussed. Subsequently, we determined the kinetic parameters for correct and incorrect nucleotide incorporation catalyzed by hPolη at various positions upstream, opposite, and downstream from dGC8-N-ABA. Notably, nucleotide incorporation efficiency and fidelity both decreased significantly during dGC8-N-ABA bypass and the subsequent extension step, leading to polymerase pausing and error-prone DNA synthesis by hPolη. Furthermore, hPolη displayed nucleotide concentration-dependent biphasic kinetics at the two polymerase pause sites, suggesting that multiple enzyme•DNA complexes likely exist during nucleotide incorporation.


Assuntos
Benzo(a)Antracenos/farmacologia , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mutagênicos/farmacologia , Benzo(a)Antracenos/metabolismo , DNA/química , DNA/metabolismo , Adutos de DNA/biossíntese , Reparo do DNA , Guanina/análogos & derivados , Células HEK293 , Humanos , Cinética , Mutagênicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA Polimerase iota
6.
Chembiochem ; 17(21): 2033-2037, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27556902

RESUMO

The environmental pollutant 3-nitrobenzanthrone produces bulky aminobenzanthrone (ABA) DNA adducts with both guanine and adenine nucleobases. A major product occurs at the C8 position of guanine (C8-dG-ABA). These adducts present a strong block to replicative polymerases but, remarkably, can be bypassed in a largely error-free manner by the human Y-family polymerase η (hPol η). Here, we report the crystal structure of a ternary Pol⋅DNA⋅dCTP complex between a C8-dG-ABA-containing template:primer duplex and hPol η. The complex was captured at the insertion stage and provides crucial insight into the mechanism of error-free bypass of this bulky lesion. Specifically, bypass involves accommodation of the ABA moiety inside a hydrophobic cleft to the side of the enzyme active site and formation of an intra-nucleotide hydrogen bond between the phosphate and ABA amino moiety, allowing the adducted guanine to form a standard Watson-Crick pair with the incoming dCTP.


Assuntos
Benzo(a)Antracenos/metabolismo , Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/análogos & derivados , Benzo(a)Antracenos/química , Adutos de DNA/química , DNA Polimerase Dirigida por DNA/química , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular
7.
J Am Chem Soc ; 137(37): 12131-42, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26327169

RESUMO

1-Nitropyrene (1-NP), an environmental pollutant, induces DNA damage in vivo and is considered to be carcinogenic. The DNA adducts formed by the 1-NP metabolites stall replicative DNA polymerases but are presumably bypassed by error-prone Y-family DNA polymerases at the expense of replication fidelity and efficiency in vivo. Our running start assays confirmed that a site-specifically placed 8-(deoxyguanosin-N(2)-yl)-1-aminopyrene (dG(1,8)), one of the DNA adducts derived from 1-NP, can be bypassed by Sulfolobus solfataricus DNA polymerase IV (Dpo4), although this representative Y-family enzyme was paused strongly by the lesion. Pre-steady-state kinetic assays were employed to determine the low nucleotide incorporation fidelity and establish a minimal kinetic mechanism for the dG(1,8) bypass by Dpo4. To reveal a structural basis for dCTP incorporation opposite dG(1,8), we solved the crystal structures of the complexes of Dpo4 and DNA containing a templating dG(1,8) lesion in the absence or presence of dCTP. The Dpo4·DNA-dG(1,8) binary structure shows that the aminopyrene moiety of the lesion stacks against the primer/template junction pair, while its dG moiety projected into the cleft between the Finger and Little Finger domains of Dpo4. In the Dpo4·DNA-dG(1,8)·dCTP ternary structure, the aminopyrene moiety of the dG(1,8) lesion, is sandwiched between the nascent and junction base pairs, while its base is present in the major groove. Moreover, dCTP forms a Watson-Crick base pair with dG, two nucleotides upstream from the dG(1,8) site, creating a complex for "-2" frameshift mutation. Mechanistically, these crystal structures provide additional insight into the aforementioned minimal kinetic mechanism.


Assuntos
Biocatálise , Adutos de DNA/metabolismo , DNA Polimerase beta/metabolismo , Sequência de Bases , Adutos de DNA/química , Adutos de DNA/genética , Nucleotídeos de Desoxicitosina/metabolismo , Cinética , Magnésio/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Pirenos/metabolismo , Especificidade por Substrato , Sulfolobus solfataricus/enzimologia
8.
J Am Chem Soc ; 137(15): 5225-30, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25825995

RESUMO

One common oxidative DNA lesion, 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG), is highly mutagenic in vivo due to its anti-conformation forming a Watson-Crick base pair with correct deoxycytidine 5'-triphosphate (dCTP) and its syn-conformation forming a Hoogsteen base pair with incorrect deoxyadenosine 5'-triphosphate (dATP). Here, we utilized time-resolved X-ray crystallography to follow 8-oxoG bypass by human DNA polymerase ß (hPolß). In the 12 solved structures, both Watson-Crick (anti-8-oxoG:anti-dCTP) and Hoogsteen (syn-8-oxoG:anti-dATP) base pairing were clearly visible and were maintained throughout the chemical reaction. Additionally, a third Mg(2+) appeared during the process of phosphodiester bond formation and was located between the reacting α- and ß-phosphates of the dNTP, suggesting its role in stabilizing reaction intermediates. After phosphodiester bond formation, hPolß reopened its conformation, pyrophosphate was released, and the newly incorporated primer 3'-terminal nucleotide stacked, rather than base paired, with 8-oxoG. These structures provide the first real-time pictures, to our knowledge, of how a polymerase correctly and incorrectly bypasses a DNA lesion.


Assuntos
DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/análogos & derivados , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Dano ao DNA , Difosfatos/química , Difosfatos/metabolismo , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Humanos , Metais/química , Metais/metabolismo , Modelos Moleculares , Oxirredução , Conformação Proteica , Fatores de Tempo
9.
DNA Repair (Amst) ; 21: 65-77, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25048879

RESUMO

3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG(C8-N-ABA)). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dG(C8-N-ABA) is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dG(C8-N-ABA) on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dG(C8-N-ABA) lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dG(C8-N-ABA) lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dG(C8-N-ABA) bypass catalyzed by Dpo4.


Assuntos
Proteínas de Bactérias/metabolismo , Adutos de DNA/genética , DNA Polimerase beta/metabolismo , Reparo do DNA , Poluentes Atmosféricos/toxicidade , Proteínas de Bactérias/química , Benzo(a)Antracenos/toxicidade , Adutos de DNA/química , DNA Polimerase beta/química , Replicação do DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Sulfolobus solfataricus/enzimologia , Sulfolobus solfataricus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA