Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091455

RESUMO

BACKGROUND: Mesothelin (MSLN) is a classic tumor-associated antigen that is expressed in lung cancer and many other solid tumors. However, MSLN is also expressed in normal mesothelium which creates a significant risk of serious inflammation for MSLN-directed therapeutics. We have developed a dual-receptor (Tmod™) system that exploits the difference between tumor and normal tissue in a subset of patients with defined heterozygous gene loss (LOH) in their tumors. METHODS: T cells engineered with the MSLN CAR Tmod construct described here contain (1) a novel MSLN-activated CAR and (2) an HLA-A*02-gated inhibitory receptor (blocker). A*02 binding is intended to override T-cell cytotoxicity, even in the presence of MSLN. The Tmod system is designed to treat heterozygous HLA class I patients, selected for HLA LOH. When A*02 is absent from tumors selected for LOH, the MSLN Tmod cells are predicted to mediate potent killing of the MSLN(+)A*02(-) malignant cells. RESULTS: The sensitivity of the MSLN Tmod cells is comparable with a benchmark MSLN CAR-T that was active but toxic in the clinic. Unlike MSLN CAR-T cells, the Tmod system robustly protects surrogate "normal" cells even in mixed-cell populations in vitro and in a xenograft model. The MSLN CAR can also be paired with other HLA class I blockers, supporting extension of the approach to patients beyond A*02 heterozygotes. CONCLUSIONS: The Tmod mechanism exemplified by the MSLN CAR Tmod construct provides an alternative route to leverage solid-tumor antigens such as MSLN in safer, more effective ways than previously possible.


Assuntos
Antígeno HLA-A2/genética , Imunoterapia Adotiva/métodos , Mesotelina/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Antígeno HLA-A2/imunologia , Humanos , Perda de Heterozigosidade , Camundongos , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Res Commun ; 2(1): 58-65, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36860694

RESUMO

Neoantigens are among the most intriguing potential immuno-oncology targets because, unlike many cancer targets that are expressed on normal tissues, they are by definition restricted to cancer cells. Medicines directed at common neoantigens such as mutant KRAS are especially interesting because they may offer the convenience and cost of an off-the-shelf therapy. However, all common KRAS mutations produce proteins that differ from the wild type at a single amino acid, creating challenges for molecular discrimination. We have undertaken an effort to optimize single-chain variable fragments (scFv) against peptide/major histocompatibility antigen complexes composed of HLA-A*11 and either G12V- or G12D-mutant KRAS peptides. These scFvs could in principle be used in chimeric antigen receptor (CAR) T-cell therapies for selected patients whose tumors bear either of these mutations. Here we show that optimization of such CARs involves a trade-off between potency and selectivity. We further show that targeting this family without high selectivity engenders risks of cross-reactivity against other members of the G-protein family to which KRAS belongs. Significance: We report an effort to generate high potency, selective CARs directed at mutant KRAS peptides. Although the heavily optimized CARs maintain high selectivity against wild-type KRAS, they lose selectivity against other KRAS-related peptides derived from human proteins. To our knowledge, this work is the first to examine the trade-off between potency and selectivity with regard to KRAS pMHC-directed CARs, illustrating the challenge to achieve both sufficient potency and high selectivity.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Humanos , Receptores de Antígenos Quiméricos/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Imunoterapia Adotiva , Anticorpos de Cadeia Única/genética
3.
Biomaterials ; 275: 120868, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34091299

RESUMO

Antigen accumulation in lymph nodes (LNs) is critical for vaccine efficacy, but understanding of vaccine biodistribution in humans or large animals remains limited. Using the rhesus macaque model, we employed a combination of positron emission tomography (PET) and fluorescence imaging to characterize the whole-animal to tissue-level biodistribution of a subunit vaccine comprised of an HIV envelope trimer protein nanoparticle (trimer-NP) and lipid-conjugated CpG adjuvant (amph-CpG). Following immunization in the thigh, PET imaging revealed vaccine uptake primarily in inguinal and iliac LNs, reaching distances up to 17 cm away from the injection site. Within LNs, trimer-NPs exhibited striking accumulation on the periphery of follicular dendritic cell (FDC) networks in B cell follicles. Comparative imaging of soluble Env trimers (not presented on nanoparticles) in naïve or previously-immunized animals revealed diffuse deposition of trimer antigens in LNs following primary immunization, but concentration on FDCs in pre-immunized animals with high levels of trimer-specific IgG. These data demonstrate the capacity of nanoparticle or "albumin hitchhiking" technologies to concentrate vaccines in genitourinary tract-draining LNs, which may be valuable for promoting mucosal immunity.


Assuntos
Vacinas contra a AIDS , Vacinas , Adjuvantes Imunológicos , Animais , Macaca mulatta , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
4.
Mol Immunol ; 128: 298-310, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33012527

RESUMO

We describe an approach to cancer therapy based on exploitation of common losses of genetic material in tumor cells (loss of heterozygosity) (Basilion et al., 1999; Beroukhim et al., 2010). This therapeutic concept addresses the fundamental problem of discrimination between tumor and normal cells and can be applied in principle to the large majority of tumors. It utilizes modular activator/blocker elements that integrate signals related to the presence and absence of ligands displayed on the cell surface (Fedorov et al., 2013). We show that the targeting system works robustly in vitro and in a mouse cancer model where absence of the HLA-A*02 allele releases a brake on engineered T cells activated by the CD19 surface antigen. This therapeutic approach potentially opens a route toward a large, new source of cancer targets.


Assuntos
Perda de Heterozigosidade/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Alelos , Animais , Antígenos CD19/imunologia , Linhagem Celular Tumoral , Feminino , Antígenos HLA-A/imunologia , Humanos , Células Jurkat , Ligantes , Camundongos , Camundongos Endogâmicos NOD
5.
NPJ Vaccines ; 5(1): 72, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802411

RESUMO

Following immunization, high-affinity antibody responses develop within germinal centers (GCs), specialized sites within follicles of the lymph node (LN) where B cells proliferate and undergo somatic hypermutation. Antigen availability within GCs is important, as B cells must acquire and present antigen to follicular helper T cells to drive this process. However, recombinant protein immunogens such as soluble human immunodeficiency virus (HIV) envelope (Env) trimers do not efficiently accumulate in follicles following traditional immunization. Here, we demonstrate two strategies to concentrate HIV Env immunogens in follicles, via the formation of immune complexes (ICs) or by employing self-assembling protein nanoparticles for multivalent display of Env antigens. Using rhesus macaques, we show that within a few days following immunization, free trimers were present in a diffuse pattern in draining LNs, while trimer ICs and Env nanoparticles accumulated in B cell follicles. Whole LN imaging strikingly revealed that ICs and trimer nanoparticles concentrated in as many as 500 follicles in a single LN within two days after immunization. Imaging of LNs collected seven days postimmunization showed that Env nanoparticles persisted on follicular dendritic cells in the light zone of nascent GCs. These findings suggest that the form of antigen administered in vaccination can dramatically impact localization in lymphoid tissues and provides a new rationale for the enhanced immune responses observed following immunization with ICs or nanoparticles.

6.
Mol Immunol ; 126: 56-64, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32768859

RESUMO

Chimeric antigen receptors (CARs) and their parent signaling molecule, the T cell receptor (TCR), are fascinating proteins of increasing relevance to disease therapy. Here we use a collection of 1221 pMHC-directed CAR constructs representing 10 pMHC targets to study aspects of CAR structure-activity relationships (SAR), with particular focus on the extracellular and transmembrane structural components. These experiments that involve pMHC targets whose number/cell can be manipulated by peptide dosing in vitro enable systematic analysis of the SAR of CARs in carefully controlled experimental situations (Harris and Kranz, 2016). We find that CARs tolerate a wide range of structural variation, with the ligand-binding domains (LBDs) dominating the SAR of CAR antigen sensitivity. Notwithstanding the critical role of the LBD, CAR antigen-binding on the cell surface, measured by pMHC tetramer staining, is not an effective predictor of functional sensitivity. These results have important implications for the design and testing of CARs aimed toward the clinic.


Assuntos
Antígenos HLA-A/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Sítios de Ligação/imunologia , Antígenos HLA-A/metabolismo , Humanos , Células Jurkat , Ligantes , Células MCF-7 , Domínios Proteicos/imunologia , Multimerização Proteica/imunologia , Receptores de Antígenos Quiméricos/imunologia , Relação Estrutura-Atividade , Linfócitos T/metabolismo
7.
ACS Nano ; 14(9): 11238-11253, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32692155

RESUMO

Although cytokine therapy is an attractive strategy to build a more robust immune response in tumors, cytokines have faced clinical failures due to toxicity. In particular, interleukin-12 has shown great clinical promise but was limited in translation because of systemic toxicity. In this study, we demonstrate an enhanced ability to reduce toxicity without affecting the efficacy of IL-12 therapy. We engineer the material properties of a NP to meet the enhanced demands for optimal cytokine delivery by using the layer-by-layer (LbL) approach. Importantly, using LbL, we demonstrate cell-level trafficking of NPs to preferentially localize to the cell's outer surface and act as a drug depot, which is required for optimal payload activity on neighboring cytokine membrane receptors. LbL-NPs showed efficacy against a tumor challenge in both colorectal and ovarian tumors at doses that were not tolerated when administered carrier-free.


Assuntos
Nanopartículas , Neoplasias , Citocinas , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico
9.
Cell ; 177(5): 1153-1171.e28, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31080066

RESUMO

Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (TFH) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential IgV gene use between immunization modalities. Ab mapping demonstrated targeting of immunodominant non-neutralizing epitopes by conventional bolus-immunized animals, whereas slow delivery-immunized animals targeted a more diverse set of epitopes. Thus, alternative immunization strategies can enhance nAb development by altering GCs and modulating the immunodominance of non-neutralizing epitopes.


Assuntos
Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Imunização Passiva , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos B/patologia , Feminino , Centro Germinativo/patologia , Centro Germinativo/virologia , Macaca mulatta , Masculino , Linfócitos T Auxiliares-Indutores/patologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
10.
Immunity ; 50(1): 241-252.e6, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552025

RESUMO

Passive administration of HIV neutralizing antibodies (nAbs) can protect macaques from hard-to-neutralize (tier 2) chimeric simian-human immunodeficiency virus (SHIV) challenge. However, conditions for nAb-mediated protection after vaccination have not been established. Here, we selected groups of 6 rhesus macaques with either high or low serum nAb titers from a total of 78 animals immunized with recombinant native-like (SOSIP) Env trimers. Repeat intrarectal challenge with homologous tier 2 SHIVBG505 led to rapid infection in unimmunized and low-titer animals. High-titer animals, however, demonstrated protection that was gradually lost as nAb titers waned over time. An autologous serum ID50 nAb titer of ∼1:500 afforded more than 90% protection from medium-dose SHIV infection. In contrast, antibody-dependent cellular cytotoxicity and T cell activity did not correlate with protection. Therefore, Env protein-based vaccination strategies can protect against hard-to-neutralize SHIV challenge in rhesus macaques by inducing tier 2 nAbs, provided appropriate neutralizing titers can be reached and maintained.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Humanos , Macaca mulatta , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA