Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Atheroscler Thromb ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538338

RESUMO

AIM: This study aimed to analyze two cases of marked hypo-high-density lipoprotein (HDL) cholesterolemia to identify mutations in ATP-binding cassette transporter A1 (ABCA1) and elucidate the molecular mechanism by which these novel pathological mutations contribute to hypo-HDL cholesterolemia in Tangier disease. METHODS: Wild type and mutant expression plasmids containing a FLAG tag inserted at the C-terminus of the human ABCA1 gene were generated and transfected into HEK293T cells. ABCA1 protein expression and cholesterol efflux were evaluated via Western blotting and efflux assay. The difference in the rate of change in protein expression was evaluated when proteolytic and protein-producing systems were inhibited. RESULTS: In case 1, a 20-year-old woman presented with a chief complaint of gait disturbance. Her HDL-C level was only 6.2 mg/dL. Tangier disease was suspected because of muscle weakness, decreased nerve conduction velocity, and splenomegaly. Whole-exome analysis showed compound heterozygosity for a W484* nonsense mutation and S1343I missense mutation, which confirmed Tangier disease. Cholesterol efflux decreased by a mixture of W484* and S1343I mutations. The S1343I mutation decreased the protein production rate but increased the degradation rate, decreasing the protein levels. This patient also had Krabbe disease. The endogenous ABCA1 protein level of macrophage cell decreased by knocking down its internal galactocerebrosidase.Case 2, a 51-year-old woman who underwent tonsillectomy presented with peripheral neuropathy, corneal opacity, and HDL-C of 3.4 mg/dL. Whole-exome analysis revealed compound heterozygosity for R579* and R1572* nonsense mutations, which confirmed Tangier disease. CONCLUSION: Case 1 is a new ABCA1 mutation with complex pathogenicity, namely, a W484*/S1343I compound heterozygote with marked hypo-HDL cholesterolemia. Analyses of the compound heterozygous mutations indicated that decreases in ABCA1 protein levels and cholesterol efflux activity caused by the novel S1343I mutation combined with loss of W484* protein activity could lead to marked hypo-HDL cholesterolemia. Galactocerebrosidase dysfunction could also be a potential confounding factor for ABCA1 protein function.

2.
PNAS Nexus ; 2(11): pgad351, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954160

RESUMO

The endoplasmic reticulum (ER)-embedded transcription factors, sterol regulatory element-binding proteins (SREBPs), master regulators of lipid biosynthesis, are transported to the Golgi for proteolytic activation to tune cellular cholesterol levels and regulate lipogenesis. However, mechanisms by which the cell responds to the levels of saturated or unsaturated fatty acids remain underexplored. Here, we show that RHBDL4/RHBDD1, a rhomboid family protease, directly cleaves SREBP-1c at the ER. The p97/VCP, AAA-ATPase complex then acts as an auxiliary segregase to extract the remaining ER-embedded fragment of SREBP-1c. Importantly, the enzymatic activity of RHBDL4 is enhanced by saturated fatty acids (SFAs) but inhibited by polyunsaturated fatty acids (PUFAs). Genetic deletion of RHBDL4 in mice fed on a Western diet enriched in SFAs and cholesterol prevented SREBP-1c from inducing genes for lipogenesis, particularly for synthesis and incorporation of PUFAs, and secretion of lipoproteins. The RHBDL4-SREBP-1c pathway reveals a regulatory system for monitoring fatty acid composition and maintaining cellular lipid homeostasis.

3.
Biomolecules ; 13(7)2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37509118

RESUMO

The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a major regulator of calcium homeostasis through activation of the vitamin D receptor (VDR). We have previously synthesized vitamin D derivatives with large adamantane (AD) rings at position 24, 25, or 26 of the side chain to study VDR agonist and/or antagonist properties. One of them-ADTK1, with an AD ring and 23,24-triple bond-shows a high VDR affinity and cell-selective VDR activity. In this study, we synthesized novel vitamin D derivatives (ADKM1-6) with an alkyl group substituted at position 25 of ADTK1 to develop more cell-selective VDR ligands. ADKM2, ADKM4, and ADKM6 had VDR transcriptional activity comparable to 1,25(OH)2D3 and ADTK1, although their VDR affinities were weaker. Interestingly, ADKM2 has selective VDR activity in kidney- and skin-derived cells-a unique phenotype that differs from ADTK1. Furthermore, ADKM2, ADKM4, and ADKM6 induced osteoblast differentiation in human dedifferentiated fat cells more effectively than ADTK1. The development of vitamin D derivatives with bulky modifications such as AD at position 24, 25, or 26 of the side chain is useful for increased stability and tissue selectivity in VDR-targeting therapy.


Assuntos
Colecalciferol , Vitamina D , Humanos , Vitamina D/farmacologia , Colecalciferol/farmacologia , Regulação da Expressão Gênica , Diferenciação Celular
4.
Nat Commun ; 12(1): 6315, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728642

RESUMO

Biological systems to sense and respond to metabolic perturbations are critical for the maintenance of cellular homeostasis. Here we describe a hepatic system in this context orchestrated by the transcriptional corepressor C-terminal binding protein 2 (CtBP2) that harbors metabolite-sensing capabilities. The repressor activity of CtBP2 is reciprocally regulated by NADH and acyl-CoAs. CtBP2 represses Forkhead box O1 (FoxO1)-mediated hepatic gluconeogenesis directly as well as Sterol Regulatory Element-Binding Protein 1 (SREBP1)-mediated lipogenesis indirectly. The activity of CtBP2 is markedly defective in obese liver reflecting the metabolic perturbations. Thus, liver-specific CtBP2 deletion promotes hepatic gluconeogenesis and accelerates the progression of steatohepatitis. Conversely, activation of CtBP2 ameliorates diabetes and hepatic steatosis in obesity. The structure-function relationships revealed in this study identify a critical structural domain called Rossmann fold, a metabolite-sensing pocket, that is susceptible to metabolic liabilities and potentially targetable for developing therapeutic approaches.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas Correpressoras/metabolismo , Fígado Gorduroso/patologia , Glucose/metabolismo , Lipídeos/fisiologia , Fígado/patologia , Oxirredutases do Álcool/genética , Animais , Linhagem Celular , Proteínas Correpressoras/genética , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Gluconeogênese , Homeostase , Humanos , Lipogênese , Fígado/metabolismo , Camundongos Knockout , Camundongos Obesos , Cultura Primária de Células
5.
J Am Chem Soc ; 143(29): 10853-10859, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34197100

RESUMO

In recent years, London dispersion interactions, which are the attractive component of the van der Waals potential, have been found to play an important role in controlling the regio- and/or stereoselectivity of various reactions. Particularly, the dispersion interactions between substrates and catalysts (or ligands) are dominant in various selective catalyzes. In contrast, repulsive steric interactions, rather than the attractive dispersion interactions, between bulky substituents are predominant in most of the noncatalytic reactions. Herein, we demonstrate the first example of London dispersion-controlled noncatalytic (2 + 2) cyclodimerization of substituted benzynes to selectively afford proximal biphenylenes in high yields and regioselectivities, depending on the extent of dispersion interactions in the substituents. This method can be applied for the synthesis of novel helical biphenylenes, which would be fascinating for chemists as these compounds are potential skeletons for ligands, catalysts, and medicines.

6.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652764

RESUMO

Infection of hosts by morbilliviruses is facilitated by the interaction between viral hemagglutinin (H-protein) and the signaling lymphocytic activation molecule (SLAM). Recently, the functional importance of the n-terminal region of human SLAM as a measles virus receptor was demonstrated. However, the functional roles of this region in the infection process by other morbilliviruses and host range determination remain unknown, partly because this region is highly flexible, which has hampered accurate structure determination of this region by X-ray crystallography. In this study, we analyzed the interaction between the H-protein from canine distemper virus (CDV-H) and SLAMs by a computational chemistry approach. Molecular dynamics simulations and fragment molecular orbital analysis demonstrated that the unique His28 in the N-terminal region of SLAM from Macaca is a key determinant that enables the formation of a stable interaction with CDV-H, providing a basis for CDV infection in Macaca. The computational chemistry approach presented should enable the determination of molecular interactions involving regions of proteins that are difficult to predict from crystal structures because of their high flexibility.


Assuntos
Vírus da Cinomose Canina/genética , Cinomose/genética , Doenças do Cão/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Animais , Química Computacional , Cinomose/virologia , Vírus da Cinomose Canina/patogenicidade , Doenças do Cão/virologia , Cães , Humanos , Macaca/virologia , Mutação Puntual/genética , Ligação Proteica/genética , Receptores Virais/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/química , Família de Moléculas de Sinalização da Ativação Linfocitária/ultraestrutura , Especificidade da Espécie , Linfócitos T/virologia
7.
Front Microbiol ; 11: 1830, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922371

RESUMO

Measles virus (MV) is a human pathogen that is classified in the genus Morbillivirus in the family Paramyxoviridae together with several non-human animal morbilliviruses. They cause severe systemic infections by using signaling lymphocytic activation molecule (SLAM) and poliovirus receptor-like 4 expressed on immune and epithelial cells, respectively, as receptors. The viral hemagglutinin (H) protein is responsible for the receptor-binding. Previously determined structures of MV-H and SLAM complexes revealed a major binding interface between the SLAM V domain and MV-H with four binding components (sites 1-4) in the interface. We studied the MV-H and human SLAM (hSLAM) complex structure in further detail by in silico analyses and determined missing regions or residues in the previously determined complex structures. These analyses showed that, in addition to sites 1-4, MV-H establishes a unique interaction with the extreme N-terminal region (ExNTR) of hSLAM. The first principles calculation-based fragment molecular orbital computation method revealed that methionine at position 29 (hSLAM-Met29) is the key residue for the interaction. hSLAM-Met29 was predicted to establish a CH-π interaction with phenylalanine at position 549 of MV-H (MVH-Phe549). A cell-cell fusion assay showed that the hSLAM-Met29 and MVH-Phe549 interaction is important for hSLAM-dependent MV membrane fusion. Furthermore, Jurkat cell lines expressing hSLAM with or without Met29 and recombinant MV possessing the H protein with or without Phe549 showed that the hSLAM-Met29 and MVH-Phe549 interaction enhanced hSLAM-dependent MV infection by ~10-fold. We speculate that in the evolutionary history of morbilliviruses, this interaction may have contributed to MV adaptation to humans because this interaction is unique for MV and only MV uses hSLAM efficiently among morbilliviruses.

8.
Curr Opin Virol ; 41: 38-45, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32344228

RESUMO

Like measles virus (MV), whose primary hosts are humans, non-human animal morbilliviruses use SLAM (signaling lymphocytic activation molecule) and PVRL4 (nectin-4) expressed on immune and epithelial cells, respectively, as receptors. PVRL4's amino acid sequence is highly conserved across species, while that of SLAM varies significantly. However, non-host animal SLAMs often function as receptors for different morbilliviruses. Uniquely, human SLAM is somewhat specific for MV, but canine distemper virus, which shows the widest host range among morbilliviruses, readily gains the ability to use human SLAM. The host range for morbilliviruses is also modulated by their ability to counteract the host's innate immunity, but the risk of cross-species transmission of non-human animal morbilliviruses to humans could occur if MV is successfully eradicated.


Assuntos
Infecções por Morbillivirus/veterinária , Infecções por Morbillivirus/virologia , Morbillivirus/fisiologia , Zoonoses Virais/transmissão , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Especificidade de Hospedeiro , Humanos , Morbillivirus/genética , Infecções por Morbillivirus/metabolismo , Infecções por Morbillivirus/transmissão , Receptores Virais/genética , Receptores Virais/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Zoonoses Virais/genética , Zoonoses Virais/metabolismo , Zoonoses Virais/virologia
9.
Int J Mol Sci ; 21(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935812

RESUMO

The selective PPARα modulator (SPPARMα) is expected to medicate dyslipidemia with minimizing adverse effects. Recently, pemafibrate was screened from the ligand library as an SPPARMα bearing strong potency. Several clinical pieces of evidence have proved the usefulness of pemafibrate as a medication; however, how pemafibrate works as a SPPARMα at the molecular level is not fully known. In this study, we investigate the molecular mechanism behind its novel SPPARMα character through a combination of approaches of X-ray crystallography, isothermal titration calorimetry (ITC), and fragment molecular orbital (FMO) analysis. ITC measurements have indicated that pemafibrate binds more strongly to PPARα than to PPARγ. The crystal structure of PPARα-ligand binding domain (LBD)/pemafibrate/steroid receptor coactivator-1 peptide (SRC1) determined at 3.2 Å resolution indicates that pemafibrate binds to the ligand binding pocket (LBP) of PPARα in a Y-shaped form. The structure also reveals that the conformation of the phenoxyalkyl group in pemafibrate is flexible in the absence of SRC1 coactivator peptide bound to PPARα; this gives a freedom for the phenoxyalkyl group to adopt structural changes induced by the binding of coactivators. FMO calculations have indicated that the accumulation of hydrophobic interactions provided by the residues at the LBP improve the interaction between pemafibrate and PPARα compared with the interaction between fenofibrate and PPARα.


Assuntos
Benzoxazóis/farmacologia , Butiratos/farmacologia , Simulação de Acoplamento Molecular , PPAR alfa/química , Benzoxazóis/química , Sítios de Ligação , Butiratos/química , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , PPAR alfa/metabolismo , Ligação Proteica
10.
Hepatology ; 71(5): 1609-1625, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31529722

RESUMO

BACKGROUND AND AIMS: Dysfunctional hepatic lipid metabolism is a cause of nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disorder worldwide, and is closely associated with insulin resistance and type 2 diabetes. ELOVL fatty acid elongase 6 (Elovl6) is responsible for converting C16 saturated and monounsaturated fatty acids (FAs) into C18 species. We have previously shown that Elovl6 contributes to obesity-induced insulin resistance by modifying hepatic C16/C18-related FA composition. APPROACH AND RESULTS: To define the precise molecular mechanism by which hepatic Elovl6 affects energy homeostasis and metabolic disease, we generated liver-specific Elovl6 knockout (LKO) mice. Unexpectedly, LKO mice were not protected from high-fat diet-induced insulin resistance. Instead, LKO mice exhibited higher insulin sensitivity than controls when consuming a high-sucrose diet (HSD), which induces lipogenesis. Hepatic patatin-like phospholipase domain-containing protein 3 (Pnpla3) expression was down-regulated in LKO mice, and adenoviral Pnpla3 restoration reversed the enhancement in insulin sensitivity in HSD-fed LKO mice. Lipidomic analyses showed that the hepatic ceramide(d18:1/18:0) content was lower in LKO mice, which may explain the effect on insulin sensitivity. Ceramide(d18:1/18:0) enhances protein phosphatase 2A (PP2A) activity by interfering with the binding of PP2A to inhibitor 2 of PP2A, leading to Akt dephosphorylation. Its production involves the formation of an Elovl6-ceramide synthase 4 (CerS4) complex in the endoplasmic reticulum and a Pnpla3-CerS4 complex on lipid droplets. Consistent with this, liver-specific Elovl6 deletion in ob/ob mice reduced both hepatic ceramide(d18:1/18:0) and PP2A activity and ameliorated insulin resistance. CONCLUSIONS: Our study demonstrates the key role of hepatic Elovl6 in the regulation of the acyl-chain composition of ceramide and that C18:0-ceramide is a potent regulator of hepatic insulin signaling linked to Pnpla3-mediated NAFLD.


Assuntos
Ceramidas/metabolismo , Elongases de Ácidos Graxos/fisiologia , Resistência à Insulina/genética , Fígado/enzimologia , Animais , Ceramidas/química , Sacarose Alimentar/administração & dosagem , Regulação para Baixo , Elongases de Ácidos Graxos/genética , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfolipases A2 Independentes de Cálcio/metabolismo , Proteína Fosfatase 2/metabolismo , Esfingosina N-Aciltransferase/metabolismo
11.
J Med Chem ; 62(19): 8809-8818, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31483660

RESUMO

Ligands for retinoid X receptors (RXRs), "rexinoids", are attracting interest as candidates for therapy of type 2 diabetes and Alzheimer's and Parkinson's diseases. However, current screening methods for rexinoids are slow and require special apparatus or facilities. Here, we created 7-hydroxy-2-oxo-6-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-2H-chromene-3-carboxylic acid (10, CU-6PMN) as a new fluorescent RXR agonist and developed a screening system of rexinoids using 10. Compound 10 was designed based on the fact that umbelliferone emits strong fluorescence in a hydrophilic environment, but the fluorescence intensity decreases in hydrophobic environments such as the interior of proteins. The developed assay using 10 enabled screening of rexinoids to be performed easily within a few hours by monitoring changes of fluorescence intensity with widely available fluorescence microplate readers, without the need for processes such as filtration.


Assuntos
Corantes Fluorescentes/química , Ligantes , Receptores X de Retinoides/agonistas , Umbeliferonas/química , Ligação Competitiva , Genes Reporter , Humanos , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Ligação Proteica , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Tetra-Hidronaftalenos/química , Umbeliferonas/metabolismo
12.
Org Lett ; 21(8): 2777-2781, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30958681

RESUMO

A total synthesis of an anticancer xanthone natural product termicalcicolanone A utilizing multiple nucleophilic aromatic substitutions and pericyclic reactions has been developed. The pyrano[3,2- b]xanthen-6-one scaffold was constructed via NHC-catalyzed aroylation to produce the benzophenone intermediate, Claisen cyclization to form the pyran ring, and intramolecular 1,4-addition to construct the xanthone framework. The prenyl group was introduced in the final stages of the synthesis through regioselective Claisen rearrangement. The synthesis has been achieved in 19 steps.

13.
FEBS Lett ; 593(2): 242-250, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30565665

RESUMO

1-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)amino]benzotriazole-5-carboxylic acid (CBt-PMN), a partial agonist of retinoid X receptor (RXR), has attracted attention due to its potential to treat type 2 diabetes and central nervous system diseases with reduced adverse effects of existing full agonists. Herein, we report the crystal structure of CBt-PMN-bound ligand-binding domain of human RXRα (hRXRα) and its biochemical characterization. Interestingly, the structure is a tetramer in nature, in which CBt-PMNs are clearly found binding in two different conformations. The dynamics of the hRXRα/CBt-PMN complex examined using molecular dynamics simulations suggest that the flexibility of the AF-2 interface depends on the conformation of the ligand. These facts reveal that the dual conformation of CBt-PMN in the complex is probably the reason behind its partial agonistic activity.


Assuntos
Receptor X Retinoide alfa/química , Receptor X Retinoide alfa/metabolismo , Tetra-Hidronaftalenos/química , Tetra-Hidronaftalenos/farmacologia , Triazóis/química , Triazóis/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
14.
J Chem Inf Model ; 59(1): 25-30, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30517784

RESUMO

In modern praxis, a knowledge-driven design of pharmaceutical compounds relies heavily on protein structure data. Nonetheless, quantification of the interaction between protein and ligand is of great importance in the theoretical evaluation of the ability of a pharmaceutical compound to comply with certain expectations. The FMO (fragment molecular orbital) method is handy in this regard. However, the physical complexity and the number of the interactions within a protein-ligand complex renders analysis of the results somewhat complicated. This situation prompted us to develop the 3D-visualization of interaction energies in protein (3D-VIEP) method; the toolkit AnalysisFMO, which should enable a more efficient and convenient workflow with FMO data generated by quantum-chemical packages such as GAMESS, PAICS, and ABINIT-MP. AnalysisFMO consists of two separate units, RbAnalysisFMO, and the PyMOL plugins. The former can extract interfragment interaction energies (IFIEs) or pair interaction energies (PIEs) from the FMO output files generated by the aforementioned quantum-chemical packages. The PyMOL plugins enable visualization of IFIEs or PIEs in the protein structure in PyMOL. We demonstrate the use of this tool on a lectin protein from Burkholderia cenocepacia in which FMO analysis revealed the existence of a new interaction between Gly84 and fucose. Moreover, we found that second-shell interactions are crucial in forming the sugar binding site. In the case of bilirubin oxidase from Myrothecium verrucaria (MvBO), we predict that interactions between Asp105 and three His residues (His401, His403, and His136) are essential for optimally positioning the His residues to coordinate Cu atoms to form one Type 2 and two Type 3 Cu ions.


Assuntos
Modelos Moleculares , Proteínas/química , Simulação por Computador , Ligação Proteica , Teoria Quântica
15.
J Chem Theory Comput ; 14(12): 6623-6631, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500196

RESUMO

Protein residue networks (PRN) from energetic and geometric data are probably not identical. PRNs constructed from ab initio pair interaction energies are analyzed for the first time and compared to PRN based on center of mass separation. We use modern, previously unused algorithms such as global and local efficiencies to quantitatively confirm that both types of PRNs do exhibit small-world character. The main novelty finding is that interaction energy-based PRNs preserve small-world character even when clustered. A node hierarchy independent of the cutoff energy used for the edge creation is characteristic for them. Efficiency centrality identifies hubs responsible for such behavior. The interaction energy-based PRNs seem to comply with the scale-free network model with respect to efficiency centrality distribution as opposed to distance based PRNs. Community detection is introduced into protein network research as an extension beyond cluster analysis to study tertiary and quaternary structures.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Algoritmos , Animais , Bovinos , Humanos , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas/metabolismo , Teoria Quântica , Termodinâmica
16.
J Med Chem ; 61(15): 6658-6673, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29989817

RESUMO

Both 25 R- and 25 S-25-adamantyl-23-yne-26,27-dinor-1α,25-dihydroxyvitamin D3 (4a and 4b) were stereoselectively synthesized by a Pd(0)-catalyzed ring closure and Suzuki-Miyaura coupling between enol-triflate 7 and alkenyl-boronic ester 8. The 25 S isomer (4b) showed high vitamin D receptor (VDR) affinity (50% of that of the natural hormone 1α,25-dihydroxyvitamin D3, 1) and transactivation potency (kidney HEK293, 90%). In endogenous gene expression, it showed high cell-type selectivity for kidney cells (HEK293, CYP24A1 160% of 1), bone cells (MG63, osteocalcin 64%), and monocytes (U937, CAMP 96%) over intestine (SW480, CYP24A1 8%) and skin (HaCaT, CYP24A1 7%) cells. The X-ray crystal structural analysis of 4b in complex with rat VDR-ligand binding domain (LBD) showed the highest Cα positional shift from the 1/VDR-LBD complex at helix 11. Helix 11 of the 4b and 1 VDR-LBD complexes also showed significant differences in surface properties. These results suggest that 4b should be examined further as another candidate for a mild preventive osteoporosis agent.


Assuntos
Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Transporte Biológico , Técnicas de Química Sintética , Cristalografia por Raios X , Células HEK293 , Humanos , Receptores de Calcitriol/genética , Estereoisomerismo , Transcrição Gênica/efeitos dos fármacos , Vitamina D/síntese química , Vitamina D/química , Vitamina D/metabolismo , Vitamina D/farmacologia
17.
Biochemistry ; 57(26): 3722-3732, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29787243

RESUMO

The expansion of protein sequence databases has enabled us to design artificial proteins by sequence-based design methods, such as full-consensus design (FCD) and ancestral-sequence reconstruction (ASR). Artificial proteins with enhanced activity levels compared with native ones can potentially be generated by such methods, but successful design is rare because preparing a sequence library by curating the database and selecting a method is difficult. Utilizing a curated library prepared by reducing conservation energies, we successfully designed two artificial l-threonine 3-dehydrogenases (SDR-TDH) with higher activity levels than native SDR-TDH, FcTDH-N1, and AncTDH, using FCD and ASR, respectively. The artificial SDR-TDHs had excellent thermal stability and NAD+ recognition compared to native SDR-TDH from Cupriavidus necator (CnTDH); the melting temperatures of FcTDH-N1 and AncTDH were about 10 and 5 °C higher than that of CnTDH, respectively, and the dissociation constants toward NAD+ of FcTDH-N1 and AncTDH were 2- and 7-fold lower than that of CnTDH, respectively. Enzymatic efficiency of the artificial SDR-TDHs were comparable to that of CnTDH. Crystal structures of FcTDH-N1 and AncTDH were determined at 2.8 and 2.1 Å resolution, respectively. Structural and MD simulation analysis of the SDR-TDHs indicated that only the flexibility at specific regions was changed, suggesting that multiple mutations introduced in the artificial SDR-TDHs altered their flexibility and thereby affected their enzymatic properties. Benchmark analysis of the SDR-TDHs indicated that both FCD and ASR can generate highly functional proteins if a curated library is prepared appropriately.


Assuntos
Oxirredutases do Álcool/metabolismo , Cupriavidus necator/enzimologia , NAD/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Biotecnologia/métodos , Cristalografia por Raios X , Cupriavidus necator/química , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Estabilidade Enzimática , Modelos Moleculares , Filogenia , Plasmídeos/genética , Engenharia de Proteínas/métodos , Dobramento de Proteína , Especificidade por Substrato
18.
Biochem Biophys Res Commun ; 499(2): 239-245, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29567478

RESUMO

Peroxisome proliferator-activated receptor-α (PPARα) is a ligand-activated transcription factor involved in the regulation of lipid homeostasis and improves hypertriglyceridemia. Pemafibrate is a novel selective PPARα modulator (SPPARMα) that activates PPARα transcriptional activity. Here, we computationally constructed the structure of the human PPARα in a complex with pemafibrate, along with that of hPPARα complexed with the classical fenofibrate, and studied their interactions quantitatively by using the first-principles calculations-based fragment molecular orbital (FMO) method. Comprehensive structural and protein-ligand binding elucidation along with the in vitro luciferase analysis let us to identify pemafibrate as a novel SPPARMα. Unlike known fibrate ligands, which bind only with the arm I of the Y-shaped ligand binding pocket, the Y-shaped pemafibrate binds to the entire cavity region. This lock and key nature causes enhanced induced fit in pemafibrate-ligated PPARα. Importantly, this selective modulator allosterically changes PPARα conformation to form a brand-new interface, which in turn binds to PPARα co-activator, PGC-1α, resulting in the full activation of PPARα. The structural basis for the potent effects of pemafibrate on PPARα transcriptional activity predicted by the in silico FMO methods was confirmed by in vitro luciferase assay for mutants. The unique binding mode of pemafibrate reveals a new pattern of nuclear receptor ligand recognition and suggests a novel basis for ligand design, offering cues for improving the binding affinity and selectivity of ligand for better clinical consequences. The findings explain the high affinity and efficacy of pemafibrate, which is expected to be in the clinical use soon.


Assuntos
Benzoxazóis/química , Benzoxazóis/metabolismo , Butiratos/química , Butiratos/metabolismo , Modelos Moleculares , PPAR alfa/química , PPAR alfa/metabolismo , Fenofibrato/química , Fenofibrato/metabolismo , Células Hep G2 , Humanos , Ligantes , Luciferases/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
19.
Biochemistry ; 56(43): 5758-5770, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28992410

RESUMO

A short chain dehydrogenase like l-threonine 3-dehydrogenase (SDR-TDH) from metagenome data (mtTDH) was identified by database mining. Its enzymatic properties suggested that mtTDH has unique characteristics relative to other SDR-TDHs, including two mesophilic and thermophilic SDR-TDHs identified in this study. The activation energy of mtTDH was the lowest (29.6 kJ/mol) of those of the SDR-TDHs, indicating that it is a psychrophilic enzyme. Size-exclusion chromatography analysis revealed mtTDH is a monomer. Crystal structures of mtTDH in apo, binary, and two ternary complexes (l-Ser- and l-Thr-soaked forms) were determined at resolutions of 1.25-1.9 Å. Structural and computational analysis revealed the molecular mechanism of switching between the open and closed states induced by substrate binding and product release. Furthermore, six residues and two water molecules at the active site contributing to product release were assigned. The residues could be categorized into two groups on the basis of the enzymatic properties of their variants: S111, Y136, and T177 and S74, T178, and D179. The former group appeared to affect l-Thr dehydrogenation directly, because the kcat value of their variants was >80-fold lower than that of wild-type mtTDH. On the other hand, the latter group contributes to switching between the open and closed states, which is important for the high substrate specificity of SDR-TDH for l-Thr: the kcat and Km toward l-Thr values of variants in these residues could not be determined because the initial velocity was unsaturated at high concentrations of l-Thr. On the basis of these findings, we proposed a product release mechanism for SDR-TDH associated with specific structural changes.


Assuntos
Oxirredutases do Álcool/química , Metagenoma , Modelos Moleculares , Oxirredutases do Álcool/genética , Cristalografia por Raios X , Domínios Proteicos
20.
PLoS One ; 11(11): e0166275, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832184

RESUMO

Dipeptidyl peptidase IV (DPP-4) enzyme is responsible for the degradation of incretins that stimulates insulin secretion and hence inhibition of DPP-4 becomes an established approach for the treatment of type 2 diabetics. We studied the interaction between DPP-4 and its inhibitor drugs (sitagliptin 1, linagliptin 2, alogliptin 3, and teneligliptin 4) quantitatively by using fragment molecular orbital calculations at the RI-MP2/cc-pVDZ level to analyze the inhibitory activities of the drugs. Apart from having common interactions with key residues, inhibitors encompassing the DPP-4 active site extensively interact widely with the hydrophobic pocket by their hydrophobic inhibitor moieties. The cumulative hydrophobic interaction becomes stronger for these inhibitors and hence linagliptin and teneligliptin have larger interaction energies, and consequently higher inhibitory activities, than their alogliptin and sitagliptin counterparts. Though effective interaction for both 2 and 3 is at [Formula: see text] subsite, 2 has a stronger binding to this subsite interacting with Trp629 and Tyr547 than 3 does. The presence of triazolopiperazine and piperazine moiety in 1 and 4, respectively, provides the interaction to the S2 extensive subsite; however, the latter's superior inhibitory activity is not only due to a relatively tighter binding to the S2 extensive subsite, but also due to the interactions to the S1 subsite. The calculated hydrophobic interfragment interaction energies correlate well with the experimental binding affinities (KD) and inhibitory activities (IC50) of the DPP-4 inhibitors.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipoglicemiantes/farmacologia , Linagliptina/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Fosfato de Sitagliptina/farmacologia , Tiazolidinas/farmacologia , Uracila/análogos & derivados , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Hipoglicemiantes/química , Linagliptina/química , Simulação de Acoplamento Molecular , Piperidinas/química , Pirazóis/química , Fosfato de Sitagliptina/química , Tiazolidinas/química , Uracila/química , Uracila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA