Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 201, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407345

RESUMO

BACKGROUND: The microbial landscape within termite guts varies across termite families. The gut microbiota of lower termites (LT) is dominated by cellulolytic flagellates that sequester wood particles in their digestive vacuoles, whereas in the flagellate-free higher termites (HT), cellulolytic activity has been attributed to fiber-associated bacteria. However, little is known about the role of individual lineages in fiber digestion, particularly in LT. RESULTS: We investigated the lignocellulolytic potential of 2223 metagenome-assembled genomes (MAGs) recovered from the gut metagenomes of 51 termite species. In the flagellate-dependent LT, cellulolytic enzymes are restricted to MAGs of Bacteroidota (Dysgonomonadaceae, Tannerellaceae, Bacteroidaceae, Azobacteroidaceae) and Spirochaetota (Breznakiellaceae) and reflect a specialization on cellodextrins, whereas their hemicellulolytic arsenal features activities on xylans and diverse heteropolymers. By contrast, the MAGs derived from flagellate-free HT possess a comprehensive arsenal of exo- and endoglucanases that resembles that of termite gut flagellates, underlining that Fibrobacterota and Spirochaetota occupy the cellulolytic niche that became vacant after the loss of the flagellates. Furthermore, we detected directly or indirectly oxygen-dependent enzymes that oxidize cellulose or modify lignin in MAGs of Pseudomonadota (Burkholderiales, Pseudomonadales) and Actinomycetota (Actinomycetales, Mycobacteriales), representing lineages located at the hindgut wall. CONCLUSIONS: The results of this study refine our concept of symbiotic digestion of lignocellulose in termite guts, emphasizing the differential roles of specific bacterial lineages in both flagellate-dependent and flagellate-independent breakdown of cellulose and hemicelluloses, as well as a so far unappreciated role of oxygen in the depolymerization of plant fiber and lignin in the microoxic periphery during gut passage in HT. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Isópteros , Lignina , Animais , Isópteros/microbiologia , Lignina/metabolismo , Filogenia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/enzimologia , Metagenoma , Polissacarídeos/metabolismo , Genoma Bacteriano , Genômica , Celulose/metabolismo
2.
Nat Commun ; 15(1): 6724, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112457

RESUMO

The higher classification of termites requires substantial revision as the Neoisoptera, the most diverse termite lineage, comprise many paraphyletic and polyphyletic higher taxa. Here, we produce an updated termite classification using genomic-scale analyses. We reconstruct phylogenies under diverse substitution models with ultraconserved elements analyzed as concatenated matrices or within the multi-species coalescence framework. Our classification is further supported by analyses controlling for rogue loci and taxa, and topological tests. We show that the Neoisoptera are composed of seven family-level monophyletic lineages, including the Heterotermitidae Froggatt, Psammotermitidae Holmgren, and Termitogetonidae Holmgren, raised from subfamilial rank. The species-rich Termitidae are composed of 18 subfamily-level monophyletic lineages, including the new subfamilies Crepititermitinae, Cylindrotermitinae, Forficulitermitinae, Neocapritermitinae, Protohamitermitinae, and Promirotermitinae; and the revived Amitermitinae Kemner, Microcerotermitinae Holmgren, and Mirocapritermitinae Kemner. Building an updated taxonomic classification on the foundation of unambiguously supported monophyletic lineages makes it highly resilient to potential destabilization caused by the future availability of novel phylogenetic markers and methods. The taxonomic stability is further guaranteed by the modularity of the new termite classification, designed to accommodate as-yet undescribed species with uncertain affinities to the herein delimited monophyletic lineages in the form of new families or subfamilies.


Assuntos
Genômica , Isópteros , Filogenia , Isópteros/genética , Isópteros/classificação , Animais , Genômica/métodos , Genoma de Inseto
3.
Insects ; 14(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37754736

RESUMO

Cockroaches of the subfamily Panesthiinae (family Blaberidae) are among the few major groups of insects feeding on decayed wood. Despite having independently evolved the ability to thrive on this recalcitrant and nitrogen-limited resource, they are among the least studied of all wood-feeding insect groups. In the pursuit of unraveling their unique digestive strategies, we explored cellulase and xylanase activity in the crop, midgut, and hindgut lumens of Panesthia angustipennis and Salganea taiwanensis. Employing Percoll density gradient centrifugation, we further fractionated luminal fluid to elucidate how the activities in the gut lumen are further partitioned. Our findings challenge conventional wisdom, underscoring the significant contribution of the hindgut, which accounts for approximately one-fifth of cellulase and xylanase activity. Particle-associated enzymes, potentially of bacterial origin, dominate hindgut digestion, akin to symbiotic strategies observed in select termites and passalid beetles. Our study sheds new light on the digestive prowess of panesthiine cockroaches, providing invaluable insights into the evolution of wood-feeding insects and their remarkable adaptability to challenging, nutrient-poor substrates.

4.
Microbiol Spectr ; 10(5): e0277922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094208

RESUMO

Many insects harbor bacterial endosymbionts that supply essential nutrients and enable their hosts to thrive on a nutritionally unbalanced diet. Comparisons of the genomes of endosymbionts and their insect hosts have revealed multiple cases of mutually-dependent metabolic pathways that require enzymes encoded in 2 genomes. Complementation of metabolic reactions at the pathway level has been described for hosts feeding on unbalanced diets, such as plant sap. However, the level of collaboration between symbionts and hosts that feed on more variable diets is largely unknown. In this study, we investigated amino acid and vitamin/cofactor biosynthetic pathways in Blattodea, which comprises cockroaches and termites, and their obligate endosymbiont Blattabacterium cuenoti (hereafter Blattabacterium). In contrast to other obligate symbiotic systems, we found no clear evidence of "collaborative pathways" for amino acid biosynthesis in the genomes of these taxa, with the exception of collaborative arginine biosynthesis in 2 taxa, Cryptocercus punctulatus and Mastotermes darwiniensis. Nevertheless, we found that several gaps specific to Blattabacterium in the folate biosynthetic pathway are likely to be complemented by their host. Comparisons with other insects revealed that, with the exception of the arginine biosynthetic pathway, collaborative pathways for essential amino acids are only observed in phloem-sap feeders. These results suggest that the host diet is an important driving factor of metabolic pathway evolution in obligate symbiotic systems. IMPORTANCE The long-term coevolution between insects and their obligate endosymbionts is accompanied by increasing levels of genome integration, sometimes to the point that metabolic pathways require enzymes encoded in two genomes, which we refer to as "collaborative pathways". To date, collaborative pathways have only been reported from sap-feeding insects. Here, we examined metabolic interactions between cockroaches, a group of detritivorous insects, and their obligate endosymbiont, Blattabacterium, and only found evidence of collaborative pathways for arginine biosynthesis. The rarity of collaborative pathways in cockroaches and Blattabacterium contrasts with their prevalence in insect hosts feeding on phloem-sap. Our results suggest that host diet is a factor affecting metabolic integration in obligate symbiotic systems.


Assuntos
Baratas , Animais , Baratas/microbiologia , Genoma Bacteriano , Filogenia , Simbiose , Insetos , Bactérias/genética , Redes e Vias Metabólicas/genética , Aminoácidos , Aminoácidos Essenciais/genética , Arginina/genética , Ácido Fólico , Vitaminas
5.
Microbiome ; 10(1): 78, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624491

RESUMO

BACKGROUND: Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota. RESULTS: We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. CONCLUSIONS: Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the "world's smallest bioreactor" has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Isópteros , Animais , Microbioma Gastrointestinal/genética , Metagenoma , Filogenia , Solo
6.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042774

RESUMO

Termites are model social organisms characterized by a polyphenic caste system. Subterranean termites (Rhinotermitidae) are ecologically and economically important species, including acting as destructive pests. Rhinotermitidae occupies an important evolutionary position within the clade representing a transitional taxon between the higher (Termitidae) and lower (other families) termites. Here, we report the genome, transcriptome, and methylome of the Japanese subterranean termite Reticulitermes speratus Our analyses highlight the significance of gene duplication in social evolution in this termite. Gene duplication associated with caste-biased gene expression was prevalent in the R. speratus genome. The duplicated genes comprised diverse categories related to social functions, including lipocalins (chemical communication), cellulases (wood digestion and social interaction), lysozymes (social immunity), geranylgeranyl diphosphate synthase (social defense), and a novel class of termite lineage-specific genes with unknown functions. Paralogous genes were often observed in tandem in the genome, but their expression patterns were highly variable, exhibiting caste biases. Some of the assayed duplicated genes were expressed in caste-specific organs, such as the accessory glands of the queen ovary and the frontal glands of soldier heads. We propose that gene duplication facilitates social evolution through regulatory diversification, leading to caste-biased expression and subfunctionalization and/or neofunctionalization conferring caste-specialized functions.


Assuntos
Genômica , Proteínas de Insetos/metabolismo , Isópteros/fisiologia , Evolução Social , Transcriptoma , Animais , Evolução Biológica , Celulases/metabolismo , Feminino , Duplicação Gênica , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Isópteros/genética
7.
Mycoscience ; 63(1): 33-38, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37091219

RESUMO

Fungi in the genus Termitomyces are external symbionts of fungus-growing termites. The three rhizogenic Termitomyces species T. eurrhizus, T. clypeatus, and T. intermedius, and one species similar to T. microcarpus that lacks pseudorrhiza, have been reported from Ryukyu Archipelago, Japan. In contrast, only two genetic groups (types A and B) of Termitomyces vegetative mycelia have been detected in nests of the fungus-growing termite Odontotermes formosanus. In this study, we investigated the relationships between the mycelial genetic groups and the basidiomata of Termitomyces samples from the Ryukyu Archipelago. We found that all the basidioma specimens and the type B mycelia formed one clade that we identified as T. intermedius. Another clade consisted of the type A mycelia, which showed similarity to T. microcarpus, was identified as T. fragilis. Our results indicate that the Japanese T. eurrhizus and T. clypeatus specimens should re-named as T. intermedius.

8.
Mol Phylogenet Evol ; 166: 107318, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562575

RESUMO

Cryptocercus Scudder, a genus of wingless, subsocial cockroaches, has low vagility but exhibits a disjunct distribution in eastern and western North America, and in China, South Korea and the Russian Far East. This distribution provides an ideal model for testing hypotheses of vicariance through plate tectonics or other natural barriers versus dispersal across oceans or other natural barriers. We sequenced 45 samples of Cryptocercus to resolve phylogenetic relationships among members of the genus worldwide. We identified four types of tRNA rearrangements among samples from the Qin-Daba Mountains. Our maximum-likelihood and Bayesian phylogenetic trees, based on mitochondrial genomes and nuclear genes (18S, 28S), strongly supported six major lineages of Cryptocercus, which displayed a clear geographical distribution pattern. We used Bayesian molecular dating to estimate the evolutionary timescale of the genus, and reconstructed Cryptocercus ancestral ranges using statistical dispersal-vicariance analysis (S-DIVA) in RASP. Two dispersal events and six vicariance events for Cryptocercus were inferred with high support. The initial vicariance event occurred between American and Asian lineages at 80.5 Ma (95% credibility interval: 60.0-104.7 Ma), followed by one vicariance event within the American lineage 43.8 Ma (95% CI: 32.0-57.5 Ma), and two dispersal 31.9 Ma (95% CI: 25.8-39.5 Ma), 21.7 Ma (95% CI: 17.3-27.1 Ma) plus four vicariance events c. 29.3 Ma, 27.2 Ma, 24.8 Ma and 16.7 Ma within the Asian lineage. Our analyses provide evidence that both vicariance and dispersal have played important roles in shaping the distribution and diversity of these woodroaches.


Assuntos
Baratas , Genoma Mitocondrial , Animais , Teorema de Bayes , Evolução Biológica , Filogenia , Filogeografia
9.
Mol Biol Evol ; 38(9): 3820-3831, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426845

RESUMO

Intracellular endosymbionts have reduced genomes that progressively lose genes at a timescale of tens of million years. We previously reported that gene loss rate is linked to mutation rate in Blattabacterium, however, the mechanisms causing gene loss are not yet fully understood. Here, we carried out comparative genomic analyses on the complete genome sequences of a representative set of 67 Blattabacterium strains, with sizes ranging between 511 and 645 kb. We found that 200 of the 566 analyzed protein-coding genes were lost in at least one lineage of Blattabacterium, with the most extreme case being one gene that was lost independently in 24 lineages. We found evidence for three mechanisms influencing gene loss in Blattabacterium. First, gene loss rates were found to increase exponentially with the accumulation of substitutions. Second, genes involved in vitamin and amino acid metabolism experienced relaxed selection in Cryptocercus and Mastotermes, possibly triggered by their vertically inherited gut symbionts. Third, we found evidence of epistatic interactions among genes leading to a "domino effect" of gene loss within pathways. Our results highlight the complexity of the process of genome erosion in an endosymbiont.


Assuntos
Bacteroidetes/genética , Baratas/microbiologia , Genoma Bacteriano , Taxa de Mutação , Simbiose/genética , Animais , Seleção Genética
10.
Environ Microbiol ; 23(8): 4092-4097, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34097340

RESUMO

Termites harbour symbiotic spirochetes in their hindguts, which have long been considered treponemes, although they represent separate lines of descent from known species of Treponema. 'Termite gut treponemes' have a mutualistic relationship with the host termites with their physiological properties including CO2 -reductive acetogenesis, from which the resulting acetate fulfils most of the respiratory requirement of the host. Song and co-workers showed that a spirochetal isolate (strain RmG30) from a Madeira cockroach represents the earliest branching lineage of extremely diverse termite (Treponema) cluster I and was a simple homolactic fermenter, suggesting that CO2 -reductive acetogenesis exhibited by some members of termite cluster I originated via horizontal gene transfer. Phylogenomic and 16S rRNA sequence-based phylogenetic analyses indicated a deeply-branched sister clade containing termite cluster I was distinguishable as a family-level lineage. In this context, a new family, 'Termitinemataceae' has been proposed for this clade. Strain RmG30 has been designated as the type strain of Breznakiella homolactica gen. nov. sp. nov. named after John A. Breznak, an American microbiologist distinguished in termite gut microbiology. The study has posed important questions for the future, including the actual roles of the termite spirochetes in each termite lineage and the evolutionary process of their physiological properties.


Assuntos
Isópteros , Animais , Humanos , Filogenia , RNA Ribossômico 16S/genética , Spirochaetales/genética , Simbiose
11.
Curr Biol ; 30(19): 3848-3855.e4, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32763167

RESUMO

The evolutionary processes that drive variation in genome size across the tree of life remain unresolved. Effective population size (Ne) is thought to play an important role in shaping genome size [1-3]-a key example being the reduced genomes of insect endosymbionts, which undergo population bottlenecks during transmission [4]. However, the existence of reduced genomes in marine and terrestrial prokaryote species with large Ne indicate that genome reduction is influenced by multiple processes [3]. One candidate process is enhanced mutation rate, which can increase adaptive capacity but can also promote gene loss. To investigate evolutionary forces associated with prokaryotic genome reduction, we performed molecular evolutionary and phylogenomic analyses of nine lineages from five bacterial and archaeal phyla. We found that gene-loss rate strongly correlated with synonymous substitution rate (a proxy for mutation rate) in seven of the nine lineages. However, gene-loss rate showed weak or no correlation with the ratio of nonsynonymous/synonymous substitution rate (dN/dS). These results indicate that genome reduction is largely associated with increased mutation rate, while the association between gene loss and changes in Ne is less well defined. Lineages with relatively high dS and dN, as well as smaller genomes, lacked multiple DNA repair genes, providing a proximate cause for increased mutation rates. Our findings suggest that similar mechanisms drive genome reduction in both intracellular and free-living prokaryotes, with implications for developing a comprehensive theory of prokaryote genome size evolution.


Assuntos
Archaea/genética , Bactérias/genética , Instabilidade Genômica/genética , Evolução Molecular , Deriva Genética , Variação Genética/genética , Genoma/genética , Genoma Bacteriano/genética , Mutação , Taxa de Mutação , Filogenia , Densidade Demográfica , Células Procarióticas/metabolismo , Seleção Genética/genética
12.
Insect Biochem Mol Biol ; 111: 103177, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31228516

RESUMO

In the evolutionarily-derived termite subfamily Nasutitermitinae (family Termitidae), soldiers defend their nestmates by discharging polycyclic diterpenes from a head projection called the "nasus." The diterpenes are synthesised in the frontal gland from the precursor geranylgeranyl diphosphate (GGPP), which is generally used for post-translational modification of proteins in animals. In this study, we constructed a comprehensive gene catalogue to search for genes involved in the diterpene biosynthesis by assembling RNA sequencing reads of Nasutitermes takasagoensis, identifying eight gene copies for GGPP synthase (GGPPS). The number of gene copies is much larger in contrast to other related insects. Gene cloning by reverse transcription-PCR and rapid amplification of cDNA ends confirmed that seven GGPPS genes (NtGGPPS1 to NtGGPPS7) have highly variable untranslated regions. Molecular phylogenetic analysis showed that the NtGGPPS7 gene was grouped with homologs obtained from ancestral termites that have only a single copy of the gene, and the NtGGPPS6 gene was grouped with homologs obtained from a basal lineage of termitids, in which soldiers do not synthesise diterpenes. As the sister group to this clade, furthermore, a monophyletic clade included all the other NtGGPPS genes (NtGGPPS1 to NtGGPPS5). Expression analyses revealed that NtGGPPS7 gene was expressed in all the examined castes and tissues, whereas all the other genes were expressed only in the soldier head. These results suggest that gene duplication followed by subfunctionalisation of the GGPPS genes might have accompanied the evolution of chemical defence in the nasute termite lineage.


Assuntos
Farnesiltranstransferase/metabolismo , Proteínas de Insetos/metabolismo , Isópteros/enzimologia , Isópteros/genética , Animais , Farnesiltranstransferase/biossíntese , Farnesiltranstransferase/genética , Regulação Enzimológica da Expressão Gênica , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Filogenia , Análise de Sequência de RNA
13.
Carbohydr Res ; 474: 1-7, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30665024

RESUMO

Symbionts in the gut of termites are expected to be large sources of enzymes involved in lignocellulose degradation, but their biotechnological potential has not been fully explored. In this study, we expressed, purified, and biochemically characterized a glycoside hydrolase family 11 xylanase, NtSymX11, from a symbiotic bacterium of the higher termite, Nasutitermes takasagoensis. NtSymX11 is a multimodular enzyme consisting of a catalytic domain and two tandem carbohydrate-binding modules (CBM36). The pH and temperature optima of NtSymX11 were pH 6.0 and 40 °C, respectively. By comparing the properties of full-length and truncated variants of NtSymX11, it was shown that CBM36 decreases the enzyme stability at acidic pH and high temperature. The main products from xylohexaose and various xylan substrates were X1-X3 xylooligosaccharides. Analysis of kinetic parameters indicated that NtSymX11 displays an outstanding catalytic performance when compared to other reported xylanases, and CBM36 enhances the activity by increasing the affinity to the substrate. Addition of Ca2+ boosted the activity of full-length enzyme, but not the truncated variant lacking the CBM, against the insoluble substrate, suggesting that CBM36 plays a role in the Ca2+-dependent increase of catalytic efficiency.


Assuntos
Bactérias/química , Proteínas de Bactérias/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Glucuronatos/metabolismo , Isópteros/microbiologia , Oligossacarídeos/metabolismo , Xilanos/metabolismo , Sequência de Aminoácidos , Animais , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Cálcio/química , Clonagem Molecular , Endo-1,4-beta-Xilanases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucuronatos/química , Concentração de Íons de Hidrogênio , Intestinos/microbiologia , Cinética , Metagenoma , Oligossacarídeos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Simbiose/fisiologia , Temperatura , Xilanos/química
14.
Proc Natl Acad Sci U S A ; 115(51): E11996-E12004, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30504145

RESUMO

Symbiotic digestion of lignocellulose in wood-feeding higher termites (family Termitidae) is a two-step process that involves endogenous host cellulases secreted in the midgut and a dense bacterial community in the hindgut compartment. The genomes of the bacterial gut microbiota encode diverse cellulolytic and hemicellulolytic enzymes, but the contributions of host and bacterial symbionts to lignocellulose degradation remain ambiguous. Our previous studies of Nasutitermes spp. documented that the wood fibers in the hindgut paunch are consistently colonized not only by uncultured members of Fibrobacteres, which have been implicated in cellulose degradation, but also by unique lineages of Spirochaetes. Here, we demonstrate that the degradation of xylan, the major component of hemicellulose, is restricted to the hindgut compartment, where it is preferentially hydrolyzed over cellulose. Metatranscriptomic analysis documented that the majority of glycoside hydrolase (GH) transcripts expressed by the fiber-associated bacterial community belong to family GH11, which consists exclusively of xylanases. The substrate specificity was further confirmed by heterologous expression of the gene encoding the predominant homolog. Although the most abundant transcripts of GH11 in Nasutitermes takasagoensis were phylogenetically placed among their homologs of Firmicutes, immunofluorescence microscopy, compositional binning of metagenomics contigs, and the genomic context of the homologs indicated that they are encoded by Spirochaetes and were most likely obtained by horizontal gene transfer among the intestinal microbiota. The major role of spirochetes in xylan degradation is unprecedented and assigns the fiber-associated Treponema clades in the hindgut of wood-feeding higher termites a prominent part in the breakdown of hemicelluloses.


Assuntos
Isópteros/microbiologia , Polissacarídeos/metabolismo , Spirochaetales/enzimologia , Spirochaetales/genética , Spirochaetales/metabolismo , Madeira/metabolismo , Animais , Celulases/genética , Celulases/metabolismo , Celulose/metabolismo , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica/genética , Transferência Genética Horizontal , Genes Bacterianos/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Metagenoma/genética , Metagenômica , Filogenia , Análise de Sequência de DNA , Simbiose , Xilanos/metabolismo , Xilosidases/classificação , Xilosidases/genética , Xilosidases/metabolismo
15.
Genome Biol Evol ; 10(6): 1622-1630, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860278

RESUMO

Almost all examined cockroaches harbor an obligate intracellular endosymbiont, Blattabacterium cuenoti. On the basis of genome content, Blattabacterium has been inferred to recycle nitrogen wastes and provide amino acids and cofactors for its hosts. Most Blattabacterium strains sequenced to date harbor a genome of ∼630 kbp, with the exception of the termite Mastotermes darwiniensis (∼590 kbp) and Cryptocercus punctulatus (∼614 kbp), a representative of the sister group of termites. Such genome reduction may have led to the ultimate loss of Blattabacterium in all termites other than Mastotermes. In this study, we sequenced 11 new Blattabacterium genomes from three species of Cryptocercus in order to shed light on the genomic evolution of Blattabacterium in termites and Cryptocercus. All genomes of Cryptocercus-derived Blattabacterium genomes were reduced (∼614 kbp), except for that associated with Cryptocercus kyebangensis, which comprised 637 kbp. Phylogenetic analysis of these genomes and their content indicates that Blattabacterium experienced parallel genome reduction in Mastotermes and Cryptocercus, possibly due to similar selective forces. We found evidence of ongoing genome reduction in Blattabacterium from three lineages of the C. punctulatus species complex, which independently lost one cysteine biosynthetic gene. We also sequenced the genome of the Blattabacterium associated with Salganea taiwanensis, a subsocial xylophagous cockroach that does not vertically transmit gut symbionts via proctodeal trophallaxis. This genome was 632 kbp, typical of that of nonsubsocial cockroaches. Overall, our results show that genome reduction occurred on multiple occasions in Blattabacterium, and is still ongoing, possibly because of new associations with gut symbionts in some lineages.


Assuntos
Baratas/genética , Flavobacteriaceae/genética , Genoma Bacteriano/genética , Isópteros/microbiologia , Simbiose/genética , Madeira/microbiologia , Animais , Filogenia
16.
Enzyme Microb Technol ; 97: 104-113, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28010766

RESUMO

A ß-glucosidase (BG), PaBG1b, from the xylophagous cockroach Panesthia angustipennis spadica was heterologously expressed in the methylotrophic yeast Pichia pastoris, purified, and biochemically characterized. Post-translational modification and N-terminal sequencing analysis demonstrated that the expression product was comprised of two polypeptides with different N-terminal sequences, presumably due to the presence of lysine-arginine (KR) sequence in the putative mature region. Substrate specificity analysis showed that PaBG1b hydrolyzed a broad range of substrates including cellohexaose, with the preference for aryl ß-d-fucosyl linkage and laminaribiose. Although the glucose tolerance of PaBG1b was moderate (Ki=200.3±1.1mM), PaBG1b demonstrated high specific activity and catalytic efficiency towards cellobiose with Vmax and kcat/Km values of 436.7±6.3U/mg and 109.8mM-1s-1, respectively. In addition, PaBG1b was not inhibited by cellobiose up to the highest concentration tested (100mM). Collectively, our work demonstrates that PaBG1b is a potentially valuable BG for commercial bioethanol production from cellulose.


Assuntos
Celobiose/metabolismo , Baratas/enzimologia , Proteínas de Insetos/metabolismo , beta-Glucosidase/metabolismo , Animais , Biocombustíveis , Baratas/genética , Estabilidade Enzimática , Etanol/metabolismo , Genes de Insetos , Proteínas de Insetos/genética , Cinética , Pichia/enzimologia , Pichia/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , beta-Glucosidase/genética
17.
J Appl Glycosci (1999) ; 63(3): 51-59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-34354483

RESUMO

In this study, a ß-glucosidase (PaBG1b) with high specific activity was purified from gut extracts of the wood-feeding cockroach Panesthia angustipennis spadica using Superdex 75 gel filtration chromatography and High-Trap phenyl hydrophobic chromatography. The protein was purified 14-fold to a single band identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, with an apparent molecular mass of 56.7 kDa. The specific activity of the purified enzyme was 708 µmol/min/mg protein using cellobiose as substrate. To the best of our knowledge, this is the highest specific activity reported among ß-glucosidases to date. The purified PaBG1b showed optimal activity at pH 5.0 and retained more than 65 % of the activity between pH 4.0 and 6.5. The activity was stable up to 50 °C for 30 min. Kinetic studies on cellobiose revealed that the K m was 5.3 mM, and the V max was 1,020 µmol/min/mg. The internal amino acid sequence of PaBG1b was analyzed, and two continuous sequences (a total of 39 amino acids) of the C-terminal region were elucidated. Based on these amino acid sequences, a full-length cDNA (1,552 bp) encoding 502 amino acids was isolated. The encoded protein showed high similarity to ß-glucosidases from glycoside hydrolase family 1. Thus, the current study demonstrated the potential of PaBG1b for application in enzymatic biomass-conversion as a donor gene for heterologous recombination of cellulase-producing agents (fungi or bacteria) or an additive enzyme for cellulase products based on the high-performance of PaBG1b as a digestive enzyme in cockroaches.

18.
Microbes Environ ; 30(3): 208-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26156552

RESUMO

Whole-genome sequencing has emerged as one of the most effective means to elucidate the biological roles and molecular features of obligate intracellular symbionts (endosymbionts). However, the de novo assembly of an endosymbiont genome remains a challenge when host and/or mitochondrial DNA sequences are present in a dataset and hinder the assembly of the genome. By focusing on the traits of genome evolution in endosymbionts, we herein developed and investigated a genome-assembly strategy that consisted of two consecutive procedures: the selection of endosymbiont contigs from an output obtained from a de novo assembly performed using a TBLASTX search against a reference genome, named TBLASTX Contig Selection and Filtering (TCSF), and the iterative reassembling of the genome from reads mapped on the selected contigs, named Iterative Mapping and ReAssembling (IMRA), to merge the contigs. In order to validate this approach, we sequenced two strains of the cockroach endosymbiont Blattabacterium cuenoti and applied this strategy to the datasets. TCSF was determined to be highly accurate and sensitive in contig selection even when the genome of a distantly related free-living bacterium was used as a reference genome. Furthermore, the use of IMRA markedly improved sequence assemblies: the genomic sequence of an endosymbiont was almost completed from a dataset containing only 3% of the sequences of the endosymbiont's genome. The efficiency of our strategy may facilitate further studies on endosymbionts.


Assuntos
Bacteroidetes/isolamento & purificação , Baratas/microbiologia , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Simbiose , Animais , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/fisiologia , Baratas/classificação , Baratas/fisiologia , Corpo Adiposo/microbiologia , Especificidade de Hospedeiro , Dados de Sequência Molecular , Filogenia
19.
J Insect Physiol ; 78: 1-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25937057

RESUMO

The mixed segment is a unique part of the gut present only in the most apical lineage of termites and consists of a complex of overlapping mesenteric and proctodeal epithelia. In spite of its unique structure, the physiological functions of the mixed segment have been poorly studied. We performed transcriptome analysis to identify functional enzymes acting in the mixed segment of the wood-feeding higher termite Nasutitermes takasagoensis. We sequenced the transcripts (4563 isotigs) of the mixed segment and compared them with those of the midgut (4813 isotigs) and the first proctodeal segment (3629 isotigs). We found that vacuolar H(+)-ATPase (V-ATPase) subunits were predominant in the mixed segment, which was confirmed by RT-qPCR analysis. The V-ATPase activity in these three tissues was in a good agreement with the expression patterns, suggesting that V-ATPase is a prevalent enzyme in the mixed segment of the termites. The results confirmed the proposed role of the mixed segment as a transporting epithelium.


Assuntos
Proteínas de Insetos/metabolismo , Isópteros/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Trato Gastrointestinal/enzimologia , Expressão Gênica , Especificidade de Órgãos , Transcriptoma
20.
Proc Biol Sci ; 281(1789): 20140990, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25009054

RESUMO

Termites consume an estimated 3-7 billion tonnes of lignocellulose annually, a role in nature which is unique for a single order of invertebrates. Their food is digested with the help of microbial symbionts, a relationship that has been recognized for 200 years and actively researched for at least a century. Although DNA- and RNA-based approaches have greatly refined the details of the process and the identities of the participants, the allocation of roles in space and time remains unclear. To resolve this issue, a pioneer study is reported using metabolomics to chart the in situ catabolism of (13)C-cellulose fed to the dampwood species Hodotermopsis sjostedti. The results confirm that the secretion of endogenous cellulases by the host may be significant to the digestive process and indicate that a major contribution by hindgut bacteria is phosphorolysis of cellodextrins or cellobiose. This study provides evidence that essential amino acid acquisition by termites occurs following the lysis of microbial tissue obtained via proctodaeal trophallaxis.


Assuntos
Celulose/metabolismo , Trato Gastrointestinal/metabolismo , Isópteros/fisiologia , Metaboloma , Aminoácidos/metabolismo , Animais , Isótopos de Carbono , Trato Gastrointestinal/microbiologia , Mucosa Intestinal/metabolismo , Isópteros/metabolismo , Isópteros/microbiologia , Espectroscopia de Ressonância Magnética , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA