Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38258076

RESUMO

Zinc diethyldithiocarbamate (Zn (DDC)2), a disulfiram metabolite (anti-alcoholism drug), has shown a strong anti-cancer activity in vitro. However, its application was limited by its low aqueous solubility and rapid metabolism. In this study, the solubility enhancement of Zn (DDC)2 is investigated by forming inclusion complexes with cyclodextrins. The inclusion complexes were prepared using two different types of beta-cyclodextrins, SBE-CD and HP-CD. Phase solubility diagrams for the resulting solutions were assessed; subsequently, the solutions were freeze-dried for further characterisation studies using DSC, TGA, XRD, and FTIR. The cytotoxic activity of the produced inclusion complexes was evaluated on human lung carcinoma cells using the MTT assay. The solubility of Zn (DDC)2 increased significantly upon adding beta-cyclodextrins, reaching approximately 4 mg/mL for 20% w/w CD solutions. The phase solubility diagram of Zn (DDC)2 was of the Ap-type according to the Higuchi and Connors model. Characterisation studies confirmed the inclusion of the amorphous drug in the CD-Zn (DDC)2 complexes. The cytotoxicity of Zn (DDC)2 was enhanced 10-fold by the inclusion complexes compared to the free drug. Overall, the resulting CD-Zn (DDC)2 inclusion complexes have a potential for treatment against lung cancer.

2.
Molecules ; 27(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080368

RESUMO

Disulfiram (DS), known as an anti-alcoholism drug, has shown a potent antiviral activity. Still, the potential clinical application of DS is limited by its low water solubility and rapid metabolism. Cyclodextrins (CDs) have been widely used to improve the solubility of drugs in water. In this study, five concentrations of hydroxypropyl ß-cyclodextrin (HP) and sulfobutyl ether ß-cyclodextrin (SBE) were used to form inclusion complexes of DS for enhanced solubility. Solutions were freeze-dried, and the interaction between DS and CD was characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). In addition, the nebulization properties of the DS-CD solutions were studied. The aqueous solubility of DS increased significantly when loaded to either of both CDs. The phase solubility of both complexes was a linear function of the CD concentration (AL type). Furthermore, physicochemical characterization studies showed a potent inclusion of the drug in the CD-DS complexes. Aerosolization studies demonstrated that these formulations are suitable for inhalation. Overall, the CD inclusion complexes have great potential for the enhancement of DS solubility. However, further studies are needed to assess the efficacy of DS-CD inclusion complexes against SARS-CoV-2 via nebulization.


Assuntos
Tratamento Farmacológico da COVID-19 , Ciclodextrinas , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina/química , Varredura Diferencial de Calorimetria , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Dissulfiram/farmacologia , Humanos , SARS-CoV-2 , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Difração de Raios X , beta-Ciclodextrinas/química
3.
Pharmaceutics ; 13(1)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435151

RESUMO

Diethyldithiocarbamate Copper II (DDC-Cu) has shown potent anticancer activity against a wide range of cancer cells, but further investigations are hindered by its practical insolubility in water. In this study, inclusion complexes of DDC-Cu with hydroxypropyl beta-cyclodextrin (HP) or sulfobutyl ether beta-cyclodextrin (SBE) were prepared and investigated as an approach to enhance the apparent solubility of DDC-Cu. Formulations were prepared by simple mixing of DDC-Cu with both cyclodextrin (CDs) at room temperature. Phase solubility assessments of the resulting solutions were performed. DDC-Cu CD solutions were freeze-dried for further characterisations by DSC, thermogravimetric analysis (TGA) and FT-IR. Stability and cytotoxicity studies were also performed to investigate the maintenance of DDC-Cu anticancer activity. The phase solubility profile deviated positively from the linearity (Ap type) showing significant solubility enhancement of the DDC-Cu in both CD solutions (approximately 4 mg/mL at 20% w/w CD solutions). The DSC and TGA analysis confirmed the solid solution status of DDC-Cu in CD. The resulting solutions of DDC-Cu were stable for 28 days and conveyed the anticancer activity of DDC-Cu on chemoresistant triple negative breast cancer cell lines, with IC50 values less than 200 nM. Overall, cyclodextrin DDC-Cu complexes offer a great potential for anticancer applications, as evidenced by their very positive effects against chemoresistant triple negative breast cancer cells.

4.
Pharm Dev Technol ; 25(5): 579-587, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31967908

RESUMO

In this study, two licensed total parenteral nanoemulsion formulations (Clinoleic® and Intralipid®) were loaded with ciprofloxacin (CP). The physicochemical characteristics and stability profiles of the formulations were investigated using a range of drug concentrations. Furthermore, formulation stability was evaluated over a period of six months at room temperature (RT) or 4 °C. Loading CP into nanoemulsions resulted in no significant differences in their measured droplet size, polydispersity index (PI), zeta potential, and pH. Drug entrapment efficiency (EE) was relatively high for all formulations, regardless of nanoemulsion type, and the drug release was sustained over 24 h. Stability studies of all formulations were performed at 4 °C and RT for 180 and 60 days, respectively. At 4 °C for 180 days, both Clinoleic® and Intralipid® formulations at a range of drug concentrations (1-10 mg/ml) showed high stabilities measured periodically by the average droplet sizes, PI, pH, and zeta potential values. Similar results, but pH values, were shown when the formulations for both nanoemulsion stored at RT for 60 days. Overall, this study has shown that CP was successfully loaded into clinically licensed TPN lipid nanoemulsions. The resultant CP-loaded nanoemulsion formulations demonstrated desirable physicochemical properties and were stable upon storage at 4 °C for up to six months.


Assuntos
Antibacterianos/administração & dosagem , Ciprofloxacina/administração & dosagem , Portadores de Fármacos/química , Emulsões Gordurosas Intravenosas/química , Nanoestruturas/química , Fosfolipídeos/química , Óleos de Plantas/química , Óleo de Soja/química , Disponibilidade Biológica , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Emulsões/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula
5.
Pharmaceutics ; 11(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739556

RESUMO

Disulfiram (DS), an anti-alcoholism medicine, shows strong anti-cancer activity in the laboratory, but the application in clinics for anti-cancer therapy has been limited by its prompt metabolism. Conventional liposomes have shown limited ability to protect DS. Therefore, the aim of this study is to develop PEGylated liposomes of DS for enhanced bio-stability and prolonged circulation. PEGylated liposomes were prepared using ethanol-based proliposome methods. Various ratios of phospholipids, namely: hydrogenated soya phosphatidylcholine (HSPC) or dipalmitoyl phosphatidylcholine (DPPC) and N-(Carbonyl-methoxypolyethylenglycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG2000) with cholesterol were used. DS was dissolved in the alcoholic solution in different lipid mol% ratios. The size of the resulting multilamellar liposomes was reduced by high-pressure homogenization. Liposomal formulations were characterized by size analysis, zeta potential, drug loading efficiency and stability in horse serum. Small unilamellar vesicles (SUVs; nanoliposomes) were generated with a size of approximately 80 to 120 nm with a polydispersity index (PDI) in the range of 0.1 to 0.3. Zeta potential values of all vesicles were negative, and the negative surface charge intensity tended to increase by PEGylation. PEGylated liposomes had a smaller size (80-90 nm) and a significantly lower PDI. All liposomes showed similar loading efficiencies regardless of lipid type (HSPC or DPPC) or PEGylations. PEGylated liposomes provided the highest drug biostability amongst all formulations in horse serum. PEGylated DPPC liposomes had t1/2 =77.3 ± 9.6 min compared to 9.7 ± 2.3 min for free DS. In vitro cytotoxicity on wild type and resistant colorectal cancer cell lines was evaluated by MTT assay. All liposomal formulations of DS were cytotoxic to both the wild type and resistant colorectal cancer cell lines and were able to reverse chemoresistance at low nanomolar concentrations. In conclusion, PEGylated liposomes have a greater potential to be used as an anticancer carrier for disulfiram.

6.
Medchemcomm ; 9(11): 1850-1861, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30568753

RESUMO

Glioblastoma is a devastating disease of the brain and is the most common malignant primary brain tumour in adults. The prognosis for patients is very poor with median time of survival after diagnosis measured in months, due in part to the tumours being highly aggressive and often resistant to chemotherapies. Alongside the ongoing research to identify key factors involved in tumour progression in glioblastoma, medicinal chemistry approaches must also be used in order to rapidly establish new and better treatments for brain tumour patients. Using a computational similarity search of the ZINC database, alongside traditional analogue design by medicinal chemistry intuition to improve the breadth of chemical space under consideration, six new hit compounds (14, 16, 18, 19, 20 and 22) were identified possessing low micromolar activity against both established cell lines (U87MG and U251MG) and patient-derived cell cultures (IN1472, IN1528 and IN1760). Each of these scaffolds provides a new platform for future development of a new therapy in this area, with particular promise shown against glioblastoma subtypes that are resistant to conventional chemotherapeutic agents.

7.
Bioorg Med Chem Lett ; 27(7): 1561-1565, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28256372

RESUMO

The prognosis for glioblastoma patients is, at best, poor, with the median time of survival after diagnosis measured in months. As such, there is much need for the rapid development of potent and novel treatments. Herein, we report our preliminary findings on the SAR of a series of indole-3-carbinol and related fragments and reveal a potent lead with low micromolar activity against a particularly resistant glioblastoma cell culture, providing a new platform for future development of a new therapy in this area.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Indóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA