Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4150, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755164

RESUMO

Age-related neurodegenerative diseases involving amyloid aggregation remain one of the biggest challenges of modern medicine. Alterations in the gastrointestinal microbiome play an active role in the aetiology of neurological disorders. Here, we dissect the amyloidogenic properties of biofilm-associated proteins (BAPs) of the gut microbiota and their implications for synucleinopathies. We demonstrate that BAPs are naturally assembled as amyloid-like fibrils in insoluble fractions isolated from the human gut microbiota. We show that BAP genes are part of the accessory genomes, revealing microbiome variability. Remarkably, the abundance of certain BAP genes in the gut microbiome is correlated with Parkinson's disease (PD) incidence. Using cultured dopaminergic neurons and Caenorhabditis elegans models, we report that BAP-derived amyloids induce α-synuclein aggregation. Our results show that the chaperone-mediated autophagy is compromised by BAP amyloids. Indeed, inoculation of BAP fibrils into the brains of wild-type mice promote key pathological features of PD. Therefore, our findings establish the use of BAP amyloids as potential targets and biomarkers of α-synucleinopathies.


Assuntos
Amiloide , Biofilmes , Caenorhabditis elegans , Neurônios Dopaminérgicos , Microbioma Gastrointestinal , Doença de Parkinson , alfa-Sinucleína , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Humanos , Biofilmes/crescimento & desenvolvimento , Amiloide/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/microbiologia , Doença de Parkinson/patologia , Camundongos , Neurônios Dopaminérgicos/metabolismo , Autofagia , Doenças Neurodegenerativas/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Encéfalo/metabolismo , Encéfalo/patologia , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
2.
Microbiol Spectr ; 11(6): e0099323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37795992

RESUMO

IMPORTANCE: Genomic diversity of nontypeable H. influenzae strains confers phenotypic heterogeneity. Multiple strains of H. influenzae can be simultaneously isolated from clinical specimens, but we lack detailed information about polyclonal infection dynamics by this pathogen. A long-term barrier to our understanding of this host-pathogen interplay is the lack of genetic tools for strain engineering and differential labeling. Here, we present a novel plasmid toolkit named pTBH (toolbox for Haemophilus), with standardized modules for fluorescent or bioluminescent labeling, adapted to H. influenzae requirements but designed to be versatile so it can be utilized in other bacterial species. We present detailed experimental and quantitative image analysis methods, together with proof-of-principle examples, and show the ample possibilities of 3D microscopy, combined with quantitative image analysis, to model H. influenzae polyclonal infection lifestyles and unravel the co-habitation and co-infection dynamics of this respiratory pathogen.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Humanos , Haemophilus influenzae/genética , Sistema Respiratório , Infecções por Haemophilus/microbiologia , Microscopia
3.
Toxins (Basel) ; 15(3)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36977103

RESUMO

Aedes albopictus is a species of mosquito, originally from Southeast Asia, that belongs to the Culicidae family and the Dipteran insect order. The distribution of this vector has rapidly changed over the past decade, making most of the temperate territories in the world vulnerable to important human vector-borne diseases such as dengue, yellow fever, zika or chikungunya. Bacillus thuringiensis var. israeliensis (Bti)-based insecticides represent a realistic alternative to the most common synthetic insecticides for the control of mosquito larvae. However, several studies have revealed emerging resistances to the major Bti Crystal proteins such as Cry4Aa, Cry4Ba and Cry11Aa, making the finding of new toxins necessary to diminish the exposure to the same toxicity factors overtime. Here, we characterized the individual activity of Cyt1Aa, Cry4Aa, Cry4Ba and Cry11Aa against A. albopictus and found a new protein, Cyt1A-like, that increases the activity of Cry11Aa more than 20-fold. Additionally, we demonstrated that Cyt1A-like facilitates the activity three new Bti toxins: Cry53-like, Cry56A-like and Tpp36-like. All in all, these results provide alternatives to the currently available Bti products for the control of mosquito populations and position Cyt proteins as enablers of activity for otherwise non-active crystal proteins.


Assuntos
Aedes , Bacillus thuringiensis , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Humanos , Bacillus thuringiensis/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Aedes/metabolismo , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/metabolismo , Mosquitos Vetores , Endotoxinas/toxicidade , Endotoxinas/metabolismo , Larva/metabolismo , Proteínas Hemolisinas/toxicidade , Proteínas Hemolisinas/metabolismo
4.
NPJ Biofilms Microbiomes ; 8(1): 62, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35909185

RESUMO

Biofilm engineering has emerged as a controllable way to fabricate living structures with programmable functionalities. The amyloidogenic proteins comprising the biofilms can be engineered to create self-assembling extracellular functionalized surfaces. In this regard, facultative amyloids, which play a dual role in biofilm formation by acting as adhesins in their native conformation and as matrix scaffolds when they polymerize into amyloid-like fibrillar structures, are interesting candidates. Here, we report the use of the facultative amyloid-like Bap protein of Staphylococcus aureus as a tool to decorate the extracellular biofilm matrix or the bacterial cell surface with a battery of functional domains or proteins. We demonstrate that the localization of the functional tags can be change by simply modulating the pH of the medium. Using Bap features, we build a tool for trapping and covalent immobilizing molecules at bacterial cell surface or at the biofilm matrix based on the SpyTag/SpyCatcher system. Finally, we show that the cell wall of several Gram-positive bacteria could be functionalized through the external addition of the recombinant engineered Bap-amyloid domain. Overall, this work shows a simple and modulable system for biofilm functionalization based on the facultative protein Bap.


Assuntos
Proteínas de Bactérias , Infecções Estafilocócicas , Amiloide/metabolismo , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia
5.
Front Microbiol ; 13: 838042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572681

RESUMO

Iron acquisition and modulation of its intracellular concentration are critical for the development of all living organisms. So far, several proteins have been described to be involved in iron homeostasis. Among them, ferritins act as the major iron storage proteins, sequestering internalized iron and modulating its concentration inside bacterial cells. We previously described that the deletion of the 3'-untranslated region (3'UTR) of the ftnA gene, which codes for ferritin in Staphylococcus aureus, increased the ftnA mRNA and ferritin levels. Here, we show that the ferritin levels are affected by RNase III and PNPase, which target the ftnA 3'UTR. Rifampicin mRNA stability experiments revealed that the half-life of the ftnA mRNA is affected by both RNase III and the ftnA 3'UTR. A transcriptional fusion of the ftnA 3'UTR to the gfp reporter gene decreased green fluorescent protein (GFP) expression, indicating that the ftnA 3'UTR could work as an independent module. Additionally, a chromosomal deletion of the ftnA 3'UTR impaired S. aureus growth under conditions of iron starvation. Overall, this work highlights the biological relevance of the ftnA 3'UTR for iron homeostasis in S. aureus.

6.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35009002

RESUMO

Bacterial genomes are pervasively transcribed, generating a wide variety of antisense RNAs (asRNAs). Many of them originate from transcriptional read-through events (TREs) during the transcription termination process. Previous transcriptome analyses revealed that the lexA gene from Staphylococcus aureus, which encodes the main SOS response regulator, is affected by the presence of an asRNA. Here, we show that the lexA antisense RNA (lexA-asRNA) is generated by a TRE on the intrinsic terminator (TTsbrB) of the sbrB gene, which is located downstream of lexA, in the opposite strand. Transcriptional read-through occurs by a natural mutation that destabilizes the TTsbrB structure and modifies the efficiency of the intrinsic terminator. Restoring the mispairing mutation in the hairpin of TTsbrB prevented lexA-asRNA transcription. The level of lexA-asRNA directly correlated with cellular stress since the expressions of sbrB and lexA-asRNA depend on the stress transcription factor SigB. Comparative analyses revealed strain-specific nucleotide polymorphisms within TTsbrB, suggesting that this TT could be prone to accumulating natural mutations. A genome-wide analysis of TREs suggested that mispairings in TT hairpins might provide wider transcriptional connections with downstream genes and, ultimately, transcriptomic variability among S. aureus strains.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , RNA Antissenso/genética , Serina Endopeptidases/genética , Staphylococcus aureus/genética , Terminação da Transcrição Genética , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Sequência de Bases , Genes Reporter , Conformação de Ácido Nucleico , Mutação Puntual , Processamento de Proteína Pós-Traducional , RNA Antissenso/química
7.
Mol Microbiol ; 117(1): 193-214, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783400

RESUMO

Staphylococcus aureus RsaG is a 3'-untranslated region (3'UTR) derived sRNA from the conserved uhpT gene encoding a glucose-6-phosphate (G6P) transporter expressed in response to extracellular G6P. The transcript uhpT-RsaG undergoes degradation from 5'- to 3'-end by the action of the exoribonucleases J1/J2, which are blocked by a stable hairpin structure at the 5'-end of RsaG, leading to its accumulation. RsaG together with uhpT is induced when bacteria are internalized into host cells or in the presence of mucus-secreting cells. Using MS2-affinity purification coupled with RNA sequencing, several RNAs were identified as targets including mRNAs encoding the transcriptional factors Rex, CcpA, SarA, and the sRNA RsaI. Our data suggested that RsaG contributes to the control of redox homeostasis and adjusts metabolism to changing environmental conditions. RsaG uses different molecular mechanisms to stabilize, degrade, or repress the translation of its mRNA targets. Although RsaG is conserved only in closely related species, the uhpT 3'UTR of the ape pathogen S. simiae harbors an sRNA, whose sequence is highly different, and which does not respond to G6P levels. Our results hypothesized that the 3'UTRs from UhpT transporter encoding mRNAs could have rapidly evolved to enable adaptation to host niches.


Assuntos
Antiporters/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Pequeno RNA não Traduzido/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Fatores de Transcrição/metabolismo , Regiões não Traduzidas/genética , Adaptação Fisiológica , Antiporters/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Glucose-6-Fosfato/metabolismo , Homeostase , Proteínas de Transporte de Monossacarídeos/genética , Oxirredução , Estabilidade de RNA , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Fatores de Transcrição/genética
8.
Antibiotics (Basel) ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210036

RESUMO

The choice of an effective therapeutic strategy in the treatment of biofilm-related infections is a significant issue. Amyloids, which have been historically related to human diseases, are now considered to be prevailing structural components of the biofilm matrix in a wide range of bacteria. This assumption creates the potential for an exciting research area, in which functional amyloids are considered to be attractive targets for drug development to dissemble biofilm structures. The present review describes the best-characterized bacterial functional amyloids and focuses on anti-biofilm agents that target intrinsic and facultative amyloids. This study provides a better understanding of the different modes of actions of the anti-amyloid molecules to inhibit biofilm formation. This information can be further exploited to improve the therapeutic strategies to combat biofilm-related infections.

9.
mBio ; 12(3): e0078921, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154422

RESUMO

Genetic variants arising from within-patient evolution shed light on bacterial adaptation during chronic infection. Contingency loci generate high levels of genetic variation in bacterial genomes, enabling adaptation to the stringent selective pressures exerted by the host. A significant gap in our understanding of phase-variable contingency loci is the extent of their contribution to natural infections. The human-adapted pathogen nontypeable Haemophilus influenzae (NTHi) causes persistent infections, which contribute to underlying disease progression. The phase-variable high-molecular-weight (HMW) adhesins located on the NTHi surface mediate adherence to respiratory epithelial cells and, depending on the allelic variant, can also confer high epithelial invasiveness or hyperinvasion. In this study, we characterize the dynamics of HMW-mediated hyperinvasion in living cells and identify a specific HMW binding domain shared by hyperinvasive NTHi isolates of distinct pathological origins. Moreover, we observed that HMW expression decreased over time by using a longitudinal set of persistent NTHi strains collected from chronic obstructive pulmonary disease (COPD) patients, resulting from increased numbers of simple-sequence repeats (SSRs) downstream of the functional P2hmw1A promoter, which is the one primarily driving HMW expression. Notably, the increased SSR numbers at the hmw1 promoter region also control a phenotypic switch toward lower bacterial intracellular invasion and higher biofilm formation, likely conferring adaptive advantages during chronic airway infection by NTHi. Overall, we reveal novel molecular mechanisms of NTHi pathoadaptation based on within-patient lifestyle switching controlled by phase variation. IMPORTANCE Human-adapted bacterial pathogens have evolved specific mechanisms to colonize their host niche. Phase variation is a contingency strategy to allow adaptation to changing conditions, as phase-variable bacterial loci rapidly and reversibly switch their expression. Several NTHi adhesins are phase variable. These adhesins are required for colonization but also immunogenic, in such a way that bacteria with lower adhesin levels are better equipped to survive an immune response, making their contribution to natural infections unclear. We show here that the major NTHi adhesin HMW1A displays allelic variation, which can drive a phase-variable epithelial hyperinvasion phenotype. Over time, hmw1A phase variation lowers adhesin expression, which controls an NTHi lifestyle switch from high epithelial invasiveness to lower invasion and higher biofilm formation. This reversible loss of function aligns with the previously stated notion that epithelial infection is essential for NTHi infection establishment, but once established, persistence favors gene inactivation, in this case facilitating biofilm growth.


Assuntos
Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Variação Genética , Genoma Bacteriano , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Adaptação Fisiológica/genética , Adesinas Bacterianas/classificação , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Biofilmes , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/patogenicidade , Humanos , Regiões Promotoras Genéticas
10.
Nucleic Acids Res ; 49(6): 3409-3426, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33660769

RESUMO

Thermoregulation of virulence genes in bacterial pathogens is essential for environment-to-host transition. However, the mechanisms governing cold adaptation when outside the host remain poorly understood. Here, we found that the production of cold shock proteins CspB and CspC from Staphylococcus aureus is controlled by two paralogous RNA thermoswitches. Through in silico prediction, enzymatic probing and site-directed mutagenesis, we demonstrated that cspB and cspC 5'UTRs adopt alternative RNA structures that shift from one another upon temperature shifts. The open (O) conformation that facilitates mRNA translation is favoured at ambient temperatures (22°C). Conversely, the alternative locked (L) conformation, where the ribosome binding site (RBS) is sequestered in a double-stranded RNA structure, is folded at host-related temperatures (37°C). These structural rearrangements depend on a long RNA hairpin found in the O conformation that sequesters the anti-RBS sequence. Notably, the remaining S. aureus CSP, CspA, may interact with a UUUGUUU motif located in the loop of this long hairpin and favour the folding of the L conformation. This folding represses CspB and CspC production at 37°C. Simultaneous deletion of the cspB/cspC genes or their RNA thermoswitches significantly decreases S. aureus growth rate at ambient temperatures, highlighting the importance of CspB/CspC thermoregulation when S. aureus transitions from the host to the environment.


Assuntos
Regiões 5' não Traduzidas , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus/genética , Temperatura , Adaptação Fisiológica/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Mutação , Conformação de Ácido Nucleico , Staphylococcus aureus/metabolismo
11.
Mol Microbiol ; 113(3): 593-602, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32185833

RESUMO

In the last decade, the implementation of high-throughput methods for RNA profiling has uncovered that a large part of the bacterial genome is transcribed well beyond the boundaries of known genes. Therefore, the transcriptional space of a gene very often invades the space of a neighbouring gene, creating large regions of overlapping transcription. The biological significance of these findings was initially regarded with scepticism. However, mounting evidence suggests that overlapping transcription between neighbouring genes conforms to regulatory purposes and provides new strategies for coordinating bacterial gene expression. In this MicroReview, considering the discoveries made in a pioneering transcriptome analysis performed on Listeria monocytogenes as a starting point, we discuss the progress in understanding the biological meaning of overlapping transcription that has given rise to the excludon concept. We also discuss new conditional transcriptional termination events that create antisense RNAs depending on the metabolite concentrations and new genomic arrangements, known as noncontiguous operons, which contain an interspersed gene that is transcribed in the opposite direction to the rest of the operon.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Transcriptoma/genética , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano/genética , Listeria monocytogenes/genética , Óperon/genética , RNA Antissenso/metabolismo , RNA Bacteriano/metabolismo , Análise de Sequência de RNA/métodos , Transcrição Gênica/genética
12.
Nucleic Acids Res ; 48(5): 2544-2563, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32016395

RESUMO

The evolution of gene expression regulation has contributed to species differentiation. The 3' untranslated regions (3'UTRs) of mRNAs include regulatory elements that modulate gene expression; however, our knowledge of their implications in the divergence of bacterial species is currently limited. In this study, we performed genome-wide comparative analyses of mRNAs encoding orthologous proteins from the genus Staphylococcus and found that mRNA conservation was lost mostly downstream of the coding sequence (CDS), indicating the presence of high sequence diversity in the 3'UTRs of orthologous genes. Transcriptomic mapping of different staphylococcal species confirmed that 3'UTRs were also variable in length. We constructed chimeric mRNAs carrying the 3'UTR of orthologous genes and demonstrated that 3'UTR sequence variations affect protein production. This suggested that species-specific functional 3'UTRs might be specifically selected during evolution. 3'UTR variations may occur through different processes, including gene rearrangements, local nucleotide changes, and the transposition of insertion sequences. By extending the conservation analyses to specific 3'UTRs, as well as the entire set of Escherichia coli and Bacillus subtilis mRNAs, we showed that 3'UTR variability is widespread in bacteria. In summary, our work unveils an evolutionary bias within 3'UTRs that results in species-specific non-coding sequences that may contribute to bacterial diversity.


Assuntos
Regiões 3' não Traduzidas/genética , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Staphylococcus/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Elementos de DNA Transponíveis/genética , Rearranjo Gênico/genética , Genes Bacterianos , Hemólise , Nucleotídeos/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ovinos , Especificidade da Espécie
13.
Methods Mol Biol ; 2106: 41-58, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31889250

RESUMO

Molecular beacons (MBs) are oligonucleotide probes with a hairpin-like structure that are typically labelled at the 5' and 3' ends with a fluorophore and a quencher dye, respectively. The conformation of the MB acts as a switch for fluorescence emission. When the fluorophore is in close proximity to the quencher, fluorescence emission cannot be detected, meaning that the switch is in an OFF state. However, if the MB structure is modified, separating the fluorophore from the quencher, the switch turns ON allowing fluorescence emission. This property has been extensively used for a wide variety of applications including real-time PCR reactions, study of protein-DNA interactions, and identification of conformational changes in RNA structures. Here, we describe a protocol based on the MB technology to measure the RNA unfolding capacities of the CspA RNA chaperone from Staphylococcus aureus. This method, with slight variations, may also be applied for testing the activity of other RNA chaperones, RNA helicases, or ribonucleases.


Assuntos
Chaperonas Moleculares/metabolismo , Técnicas de Sonda Molecular , Dobramento de RNA , Sondas RNA/química , RNA/química , Animais , Fluoresceína/química , Corantes Fluorescentes/química , Humanos , Chaperonas Moleculares/química , Ligação Proteica , RNA/metabolismo
14.
Front Mol Biosci ; 7: 617633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490108

RESUMO

Bacterial messenger RNAs (mRNAs) are composed of 5' and 3' untranslated regions (UTRs) that flank the coding sequences (CDSs). In eukaryotes, 3'UTRs play key roles in post-transcriptional regulatory mechanisms. Shortening or deregulation of these regions is associated with diseases such as cancer and metabolic disorders. Comparatively, little is known about the functions of 3'UTRs in bacteria. Over the past few years, 3'UTRs have emerged as important players in the regulation of relevant bacterial processes such as virulence, iron metabolism, and biofilm formation. This MiniReview is an update for the different 3'UTR-mediated mechanisms that regulate gene expression in bacteria. Some of these include 3'UTRs that interact with the 5'UTR of the same transcript to modulate translation, 3'UTRs that are targeted by specific ribonucleases, RNA-binding proteins and small RNAs (sRNAs), and 3'UTRs that act as reservoirs of trans-acting sRNAs, among others. In addition, recent findings regarding a differential evolution of bacterial 3'UTRs and its impact in the species-specific expression of orthologous genes are also discussed.

15.
Mol Microbiol ; 113(4): 826-840, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31876031

RESUMO

Bacterial genomes encode several families of protein paralogs. Discrimination between functional divergence and redundancy among paralogs is challenging due to their sequence conservation. Here, we investigated whether the amino acid differences present in the cold shock protein (CSP) paralogs of Staphylococcus aureus were responsible for functional specificity. Since deletion of cspA reduces the synthesis of staphyloxanthin (STX), we used it as an in vivo reporter of CSP functionality. Complementation of a ΔcspA strain with the different S. aureus CSP variants showed that only CspA could specifically restore STX production by controlling the activity of the stress-associated sigma B factor (σB ). To determine the amino acid residues responsible for CspA specificity, we created several chimeric CSPs that interchanged the amino acid differences between CspA and CspC, which shared the highest identity. We demonstrated that CspA Pro58 was responsible for the specific control of σB activity and its associated phenotypes. Interestingly, CspC gained the biological function of CspA when the E58P substitution was introduced. This study highlights how just one evolutionarily selected amino acid change may be sufficient to modify the specific functionality of CSP paralogs.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas e Peptídeos de Choque Frio/metabolismo , Staphylococcus aureus/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas e Peptídeos de Choque Frio/genética , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Staphylococcus aureus/genética
16.
EMBO J ; 38(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30760492

RESUMO

Pathogenic bacteria must rapidly adapt to ever-changing environmental signals resulting in metabolism remodeling. The carbon catabolite repression, mediated by the catabolite control protein A (CcpA), is used to express genes involved in utilization and metabolism of the preferred carbon source. Here, we have identified RsaI as a CcpA-repressed small non-coding RNA that is inhibited by high glucose concentrations. When glucose is consumed, RsaI represses translation initiation of mRNAs encoding a permease of glucose uptake and the FN3K enzyme that protects proteins against damage caused by high glucose concentrations. RsaI also binds to the 3' untranslated region of icaR mRNA encoding the transcriptional repressor of exopolysaccharide production and to sRNAs induced by the uptake of glucose-6 phosphate or nitric oxide. Furthermore, RsaI expression is accompanied by a decreased transcription of genes involved in carbon catabolism pathway and an activation of genes involved in energy production, fermentation, and nitric oxide detoxification. This multifaceted RNA can be considered as a metabolic signature when glucose becomes scarce and growth is arrested.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Glucose/deficiência , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Proteínas Repressoras/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Glucose/administração & dosagem , Redes e Vias Metabólicas , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Ribossomos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Edulcorantes/administração & dosagem , Transcriptoma
18.
Nat Commun ; 9(1): 523, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410457

RESUMO

Bacteria use two-component systems (TCSs) to sense and respond to environmental changes. The core genome of the major human pathogen Staphylococcus aureus encodes 16 TCSs, one of which (WalRK) is essential. Here we show that S. aureus can be deprived of its complete sensorial TCS network and still survive under growth arrest conditions similarly to wild-type bacteria. Under replicating conditions, however, the WalRK system is necessary and sufficient to maintain bacterial growth, indicating that sensing through TCSs is mostly dispensable for living under constant environmental conditions. Characterization of S. aureus derivatives containing individual TCSs reveals that each TCS appears to be autonomous and self-sufficient to sense and respond to specific environmental cues, although some level of cross-regulation between non-cognate sensor-response regulator pairs occurs in vivo. This organization, if confirmed in other bacterial species, may provide a general evolutionarily mechanism for flexible bacterial adaptation to life in new niches.


Assuntos
Staphylococcus aureus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento
19.
Nucleic Acids Res ; 46(3): 1345-1361, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29309682

RESUMO

RNA-binding proteins (RBPs) are essential to fine-tune gene expression. RBPs containing the cold-shock domain are RNA chaperones that have been extensively studied. However, the RNA targets and specific functions for many of them remain elusive. Here, combining comparative proteomics and RBP-immunoprecipitation-microarray profiling, we have determined the regulon of the RNA chaperone CspA of Staphylococcus aureus. Functional analysis revealed that proteins involved in carbohydrate and ribonucleotide metabolism, stress response and virulence gene expression were affected by cspA deletion. Stress-associated phenotypes such as increased bacterial aggregation and diminished resistance to oxidative-stress stood out. Integration of the proteome and targetome showed that CspA post-transcriptionally modulates both positively and negatively the expression of its targets, denoting additional functions to the previously proposed translation enhancement. One of these repressed targets was its own mRNA, indicating the presence of a negative post-transcriptional feedback loop. CspA bound the 5'UTR of its own mRNA disrupting a hairpin, which was previously described as an RNase III target. Thus, deletion of the cspA 5'UTR abrogated mRNA processing and auto-regulation. We propose that CspA interacts through a U-rich motif, which is located at the RNase III cleavage site, portraying CspA as a putative RNase III-antagonist.


Assuntos
Proteínas de Bactérias/genética , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Proteoma/genética , Regulon , Ribonuclease III/genética , Staphylococcus aureus/genética , Regiões 5' não Traduzidas , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Pareamento de Bases , Sítios de Ligação , Metabolismo dos Carboidratos/genética , Deleção de Genes , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , Proteoma/metabolismo , RNA Bacteriano , Ribonuclease III/química , Ribonuclease III/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Estresse Fisiológico/genética , Virulência
20.
Macromol Biosci ; 15(8): 1060-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25914260

RESUMO

Modification of the biomaterial surface topography is a promising strategy to prevent bacterial adhesion and biofilm formation. In this study, we use direct laser interference patterning (DLIP) to modify polystyrene surface topography at sub-micrometer scale. The results revealed that three-dimensional micrometer structures have a profound impact on bacterial adhesion. Thus, line- and pillar-like patterns enhanced S. aureus adhesion, whereas complex lamella microtopography reduced S. aureus adhesion in static and continuous flow culture conditions. Interestingly, lamella-like textured surfaces retained the capacity to inhibit S. aureus adhesion both when the surface is coated with human serum proteins and when the material is implanted subcutaneously in a foreign-body associated infection model.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Poliestirenos/química , Staphylococcus aureus/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Incrustação Biológica , Proteínas Sanguíneas/química , Humanos , Lasers , Poliestirenos/farmacologia , Staphylococcus aureus/química , Staphylococcus aureus/patogenicidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA