Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Radiol Prot ; 36(4): 842-857, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27739403

RESUMO

Ambient dose equivalent H *(10) is an operational quantity recommended by the IAEA to establish dose constraints in area monitoring for external radiation. The direct measurement of H *(10) is not common due to the complexity in the calibration procedures of radiation monitors involving the use of expanded and aligned radiation fields. Therefore, conversion coefficients are used to assess H *(10) from the physical quantity air-kerma. Conversion coefficients published by international commissions, ICRU and ICRP, present a correlation with the radiation beam quality. However, Brazilian regulation establishes 1.14 Sv Gy-1 as unique conversion coefficient to convert air-kerma into H *(10), disregarding its beam quality dependence. The present study computed mean conversion coefficients from secondary and transmitted x-ray beams in order to improve the current assessment of H *(10). The weighting of conversion coefficients corresponding to monoenergetic beams with the spectrum energy distribution in terms of air-kerma was used to compute the mean conversion coefficients. In order to represent dedicated chest radiographic facilities, an anthropomorphic phantom was used as scatter object of the primary beam. Secondary x-ray spectra were measured in the diagnostic energy range at scattering angles of 30°, 60°, 90° 120° and 150° degrees. Barite mortar plates were used as attenuator of the secondary beam to produce the corresponding transmitted x-ray spectra. Results show that the mean conversion coefficients are about 43% higher than the recommended value accepted by Brazilian regulation. For secondary radiation measured at 100 kV the mean coefficient should be 1.46 Sv Gy-1, which represent the higher value in the mean coefficient set corresponding to secondary beams. Moreover, for transmitted x-ray beams at 100 kV, the recommended mean conversion coefficient is 1.65 Sv Gy-1 for all barite mortar plate thickness and all scattering angles. An example of application shows the discrepancy in the evaluation of secondary shielding barriers in a controlled area when the shielding goals is evaluated. The conclusion based on these results is that a unique coefficient may not be adequate for deriving the H *(10).


Assuntos
Doses de Radiação , Monitoramento de Radiação/normas , Radiologia , Brasil , Proteção Radiológica , Espalhamento de Radiação , Raios X
2.
J Radiol Prot ; 36(1): 117-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26835613

RESUMO

According to the International Commission on Radiation Units and Measurements (ICRU), the relationship between effective dose and incident air-kerma is complex and depends on the attenuation of x-rays in the body. Therefore, it is not practical to use this quantity for shielding design purposes. This correlation is adopted in practical situations by using conversion coefficients calculated using validated mathematical models by the ICRU. The ambient dose equivalent, H*(10), is a quantity adopted by the IAEA for monitoring external exposure. Dose constraint levels are established in terms of H*(10), while the radiation levels in radiometric surveys are calculated by means of the measurements of air-kerma with ion chambers. The resulting measurements are converted into ambient dose equivalents by conversion factors. In the present work, an experimental study of the relationship between the air-kerma and the operational quantity ambient dose equivalent was conducted using different experimental scenarios. This study was done by measuring the primary x-ray spectra and x-ray spectra transmitted through materials used in dedicated chest radiographic facilities, using a CdTe detector. The air-kerma to ambient dose equivalent conversion coefficients were calculated from these measured spectra. The resulting values of the quantity ambient dose equivalent using these conversion coefficients are more realistic than those available in the literature, because they consider the real energy distribution of primary and transmitted x-ray beams. The maximum difference between the obtained conversion coefficients and the constant value recommended in national and international radiation protection standards is 53.4%. The conclusion based on these results is that a constant coefficient may not be adequate for deriving the ambient dose equivalent.


Assuntos
Doses de Radiação , Proteção Radiológica , Radiologia , Raios X
3.
Appl Radiat Isot ; 100: 32-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25599872

RESUMO

In this work, the energy response functions of a CdTe detector were obtained by Monte Carlo (MC) simulation in the energy range from 5 to 160keV, using the PENELOPE code. In the response calculations the carrier transport features and the detector resolution were included. The computed energy response function was validated through comparison with experimental results obtained with (241)Am and (152)Eu sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a CdTe detector (model XR-100T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the CdTe exhibits good energy response at low energies (below 40keV), showing only small distortions on the measured spectra. For energies below about 80keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by a theoretical model of the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieving more accurate spectra from which quality parameters (i.e., half-value layer and homogeneity coefficient) can be determined.

4.
Appl Radiat Isot ; 100: 27-31, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25600507

RESUMO

Primary X-ray spectra were measured in the range of 80-150kV in order to validate a computer program based on a semiempirical model. The ratio between the characteristic and total air Kerma was considered to compare computed results and experimental data. Results show that the experimental spectra have higher first HVL and mean energy than the calculated ones. The ratios between the characteristic and total air Kerma for calculated spectra are in good agreement with experimental results for all filtrations used.

5.
Phys Med Biol ; 57(7): 1919-35, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22421418

RESUMO

In this work, a Monte Carlo code was used to investigate the performance of different x-ray spectra in digital mammography, through a figure of merit (FOM), defined as FOM = CNR²/(¯)D(g), with CNR being the contrast-to-noise ratio in image and [Formula: see text] being the average glandular dose. The FOM was studied for breasts with different thicknesses t (2 cm ≤ t ≤ 8 cm) and glandular contents (25%, 50% and 75% glandularity). The anode/filter combinations evaluated were those traditionally employed in mammography (Mo/Mo, Mo/Rh, Rh/Rh), and a W anode combined with Al or K-edge filters (Zr, Mo, Rh, Pd, Ag, Cd, Sn), for tube potentials between 22 and 34 kVp. Results show that the W anode combined with K-edge filters provides higher values of FOM for all breast thicknesses investigated. Nevertheless, the most suitable filter and tube potential depend on the breast thickness, and for t ≥ 6 cm, they also depend on breast glandularity. Particularly for thick and dense breasts, a W anode combined with K-edge filters can greatly improve the digital technique, with the values of FOM up to 200% greater than that obtained with the anode/filter combinations and tube potentials traditionally employed in mammography. For breasts with t < 4 cm, a general good performance was obtained with the W anode combined with 60 µm of the Mo filter at 24-25 kVp, while 60 µm of the Pd filter provided a general good performance at 24-26 kVp for t = 4 cm, and at 28-30 and 29-31 kVp for t = 6 and 8 cm, respectively.


Assuntos
Mamografia/métodos , Método de Monte Carlo , Intensificação de Imagem Radiográfica/métodos , Fótons , Análise Espectral
6.
Appl Radiat Isot ; 70(7): 1355-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22169681

RESUMO

In this work, the energy response functions of Si(Li), SDD and CdTe detectors were studied in the mammographic energy range through Monte Carlo simulation. The code was modified to take into account carrier transport effects and the finite detector energy resolution. The results obtained show that all detectors exhibit good energy response at low energies. The most important corrections for each detector were discussed, and the corrected mammographic x-ray spectra obtained with each one were compared. Results showed that all detectors provided similar corrected spectra, and, therefore, they could be used to accurate mammographic x-ray spectroscopy. Nevertheless, the SDD is particularly suitable for clinic mammographic x-ray spectroscopy due to the easier correction procedure and portability.


Assuntos
Compostos de Cádmio/análise , Lítio/análise , Mamografia/métodos , Silício/análise , Análise Espectral/métodos , Telúrio/análise , Raios X
7.
Phys Med Biol ; 55(15): 4335-59, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20647608

RESUMO

In this work, a computational code for the study of imaging systems and dosimetry in conventional and digital mammography through Monte Carlo simulations is described. The developed code includes interference and Doppler energy broadening for simulation of elastic and inelastic photon scattering, respectively. The code estimates the contribution of scattered radiation to image quality through the spatial distribution of the scatter-to-primary ratio (S/P). It allows the inclusion of different designs of anti-scatter grids (linear or cellular), for evaluation of contrast improvement factor (CIF), Bucky factor (BF) and signal difference-to-noise ratio improvement factor (SIF). It also allows the computation of the normalized average glandular dose, D(g).(N). These quantities were studied for different breast thicknesses and compositions, anode/filter combinations and tube potentials. Results showed that the S/P increases linearly with breast thickness, varying slightly with breast composition or the spectrum used. Evaluation of grid performance showed that the cellular grid provides the highest CIF with smaller BF. The SIF was also greater for the cellular grid, although both grids showed SIF < 1 for thin breasts. Results for D(g).(N) showed that it increases with the half-value layer (HVL) of the spectrum, decreases considerably with breast thickness and has a small dependence on the anode/filter combination. Inclusion of interference effects of breast tissues affected the values of S/P obtained with the grid up to 25%, while the energy broadening effect produced smaller variations on the evaluated quantities.


Assuntos
Mama/citologia , Mamografia/métodos , Método de Monte Carlo , Doses de Radiação , Espalhamento de Radiação , Elasticidade , Fótons , Intensificação de Imagem Radiográfica , Reprodutibilidade dos Testes
8.
Appl Radiat Isot ; 68(4-5): 755-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19836251

RESUMO

In this work, two semi-analytical models are described to evaluate the subject contrast of nodules and the normalized average glandular dose in mammography. Both models were used to study the influence of some parameters, such as breast characteristics (thickness and composition) and incident spectra (kVp and target-filter combination) on the subject contrast of a nodule and on the normalized average glandular dose. From the subject contrast results, detection limits of nodules were also determined. Our results are in good agreement with those reported by other authors, who had used Monte Carlo simulation, showing the robustness of our semi-analytical method.


Assuntos
Carga Corporal (Radioterapia) , Mama/fisiopatologia , Mamografia/métodos , Modelos Biológicos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiometria/métodos , Simulação por Computador , Feminino , Humanos , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA