Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(46): 8674-8681, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36350348

RESUMO

The atmospheric reaction of a series of furan compounds (furan (F), 2-methylfuran (2-MF), 3-methylfuran (3-MF), 2,5-dimethylfuran (2,5-DMF), and 2,3,5-trimethylfuran (2,3,5-TMF)) with nitrate radical (NO3) has been investigated using the relative rate kinetic method in the CHamber for the Atmospheric Reactivity and the Metrology of the Environment (CHARME) simulation chamber at the laboratoire de Physico-Chimie de l'Atmosphere (LPCA) laboratory (Dunkerque, France). The experiments were performed at (294 ± 2) K atmospheric pressure and under dry conditions (relative humidity, RH < 2%) with proton transfer mass reaction-time of flight-mass spectrometer (PTR-ToF-MS) for the chemical analysis. The following rate coefficients (in units cm3 molecule-1 s-1) were determined: furan, k(F) = (1.51 ± 0.38) × 10-12, 2-methylfuran, k(2-MF) = (1.91 ± 0.32) × 10-11, 3-methylfuran, k(3-MF) = (1.49 ± 0.33) × 10-11, 2,5-dimethylfuran, k(2,5-DMF) = (5.82 ± 1.21) × 10-11, and 2,3,5-trimethylfuran, k(2,3,5-TMF) = (1.66 ± 0.69) × 10-10. The uncertainty on the measured rate coefficient (ΔkFC) includes both the uncertainty on the measurement and that on the rate coefficient of the reference molecule. To our knowledge, this work represents the first determination for the rate coefficient of the 2,3,5-TMF reaction with NO3. This work shows that the reaction between furan and methylated furan compounds with nitrate radical (NO3) is the dominant removal pathway during the night with lifetimes between 0.5 and 55 min for the studied molecules.


Assuntos
Nitratos , Compostos Orgânicos , Nitratos/química , Furanos/química , Cinética
2.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144798

RESUMO

A new photoacoustic soot spectrometer (PASS) operating at 880 nm was developed, for the first time, for filter-free measurements of black carbon (BC). The performance of the developed PASS was characterized and evaluated using a reference aethalometer AE51 on incense smoke in the air. An excellent correlation on the measurement of incense smoke was found between the two instruments in comparison with a regression coefficient of 0.99. A 1 σ detection limit of 0.8 µg m-3 was achieved for BC measurement at a time resolution of 1 s. It can be further reduced to 0.1 µg m-3, using a longer integration time of 1 min.


Assuntos
Poluentes Atmosféricos , Fuligem , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Análise Espectral
3.
J Phys Chem A ; 126(39): 6973-6983, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36166752

RESUMO

The gas-phase reaction between trans-2-hexenal (T2H) and chlorine atoms (Cl) was studied using three complementary experimental setups at atmospheric pressure and room temperature. In this work, we studied the rate constant for the titled oxidation reaction as well as the formation of the gas-phase products and secondary organic aerosols (SOAs). The rate constant of the T2H + Cl reaction was determined using the relative method in a simulation chamber using proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) to monitor the loss of T2H and the reference compound. An average reaction rate constant of (3.17 ± 0.72) × 10-10 cm3 molecule-1 s-1 was obtained. From this, the atmospheric lifetime of T2H due to Cl reaction was estimated to be 9 h for coastal regions. HCl, CO, and butanal were identified as primary products using Fourier transform infrared spectroscopy (FTIR). The molar yield of butanal was (6.4 ± 0.3)%. Formic acid was identified as a secondary product by FTIR. In addition, butanal, 2-chlorohexenal, and 2-hexenoic acid were identified as products by gas chromatography coupled to mass spectrometry but not quantified. A reaction mechanism is proposed based on the observed products. SOA formation was observed by using a fast mobility particle sizer spectrometer. The measured SOA yields reached maximum values of about 38% at high particle mass concentrations. This work exhibits for the first time that T2H can be a source of SOA in coastal atmospheres, where Cl concentrations can be high at dawn, or in industrial areas, such as ceramic industries, where Cl precursors may be present.

4.
J Phys Chem A ; 126(27): 4413-4423, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35776765

RESUMO

Unsaturated alcohols are volatile organic compounds (VOCs) that characterize the emissions of plants. Changes in climate together with related increases of biotic and abiotic stresses are expected to increase these emissions in the future. Ozonolysis is one of the oxidation pathways that control the fate of unsaturated alcohols in the atmosphere. The rate coefficients of the gas-phase O3 reaction with seven C5-C8 unsaturated alcohols were determined at 296 K using both absolute and relative kinetic methods. The following rate coefficients (cm3 molecule-1 s-1) were obtained using the absolute method: (1.1 ± 0.2) × 10-16 for cis-2-penten-1-ol, (1.2 ± 0.2) × 10-16 for trans-2-hexen-1-ol, (6.4 ± 1.0) × 10-17 for trans-3-hexen-1-ol, (5.8 ± 0.9) × 10-17 for cis-3-hexen-1-ol, (2.0 ± 0.3) × 10-17 for 1-octen-3-ol, and (8.4 ± 1.3) × 10-17 for trans-2-octen-1-ol. The following rate coefficients (cm3 molecule-1 s-1) were obtained using the relative method: (1.27 ± 0.11) × 10-16 for trans-2-hexen-1-ol, (5.01 ± 0.30) × 10-17 for trans-3-hexen-1-ol, (4.13 ± 0.34) × 10-17 for cis-3-hexen-1-ol, and (1.40 ± 0.12) × 10-16 for trans-4-hexen-1-ol. Alkenols display high reactivities with ozone with lifetimes in the hour range. Rate coefficients show a strong and complex dependence on the structure of the alkenol, particularly the relative position of the OH group toward the C═C double bond. The results are discussed and compared to both the available literature data and four structure-activity relationship (SAR) methods.


Assuntos
Álcoois , Ozônio , Álcoois/química , Atmosfera/química , Radical Hidroxila/química , Cinética , Ozônio/química
5.
Phys Chem Chem Phys ; 24(12): 7396-7404, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35266491

RESUMO

We report a new spectroscopic platform coupled to an atmospheric simulation chamber for the direct determination of chemical rate constants with high accuracy at a second time-scale resolution. These developed analytical instruments consist of an incoherent broadband cavity enhanced absorption spectrometer using a red light emitting diode (LED) emitting at ∼662 nm (LED-IBBCEAS) associated with a multipass cell direct absorption spectrometer (MPC-DAS) coupled to an external cavity quantum cascade laser (EC-QCL) operating in the mid-infrared region at approximately 8 µm (EC-QCL-MPC-DAS). Spectrometers were employed to investigate the NO3-initiated oxidation of four selected volatile organic compounds (VOCs) for the determination of the corresponding rate constants with a dynamic range of 5 orders of magnitude (from 10-11 to 10-16 cm3 molecule-1 s-1). Rate constants of (6.5 ± 0.5) × 10-15, (7.0 ± 0.4) × 10-13, and (5.8 ± 0.5) × 10-16 cm3 molecule-1 s-1 for propanal, isoprene and formaldehyde, respectively, were directly determined by fitting the measured concentration-time profiles of NO3 and VOCs (measured using a proton transfer reaction time-of-flight mass spectrometer, PTR-ToF-MS) to chemical models based on the FACSIMILE simulation software (version 4.2.50) at 760 torr and 293 ± 2 K. The obtained rate constants are in good agreement with the most recent recommendations of the IUPAC (International Union of Pure and Applied Chemistry). In addition, a rate constant of (2.60 ± 0.30) × 10-11 cm3 molecule-1 s-1 for the oxidation of 2-methoxyphenol by NO3 radicals was first determined using the absolute kinetic method. Compared to the mostly used indirect relative rate method, the rate constant uncertainty is reduced from ∼20% to ∼12%. The results demonstrated the high potential of using modern spectroscopic techniques to directly determine the chemical reaction rate constants.

6.
Sci Adv ; 8(8): eabj9156, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35213219

RESUMO

Surface cleaning using commercial disinfectants, which has recently increased during the coronavirus disease 2019 pandemic, can generate secondary indoor pollutants both in gas and aerosol phases. It can also affect indoor air quality and health, especially for workers repeatedly exposed to disinfectants. Here, we cleaned the floor of a mechanically ventilated office room using a commercial cleaner while concurrently measuring gas-phase precursors, oxidants, radicals, secondary oxidation products, and aerosols in real-time; these were detected within minutes after cleaner application. During cleaning, indoor monoterpene concentrations exceeded outdoor concentrations by two orders of magnitude, increasing the rate of ozonolysis under low (<10 ppb) ozone levels. High number concentrations of freshly nucleated sub-10-nm particles (≥105 cm-3) resulted in respiratory tract deposited dose rates comparable to or exceeding that of inhalation of vehicle-associated aerosols.

7.
Sci Total Environ ; 817: 153010, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026240

RESUMO

The hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) particles produced during dark ozonolysis of γ-terpinene under different reaction conditions were investigated. The SOA particles were produced in the presence or absence of cyclohexane, an OH scavenger; 1,3,5-trimethylbenzene, an anthropogenic volatile organic compound; and (NH4)2SO4 seed particles. A hygroscopicity tandem differential mobility analyzer was used to determine the GFs of the SOA particles at RHs ≤ 93%. For some experiments, a CCN counter was used for size-resolved measurement of CCN activation at supersaturation (S) in the range of 0.1 to 1%. The single hygroscopicity parameter κ was derived from both the GF and CCN measurements. Under subsaturated conditions, all the SOA (except those in the presence of the (NH4)2SO4 seeds) showed small GF values. These GFs demonstrated that SOA mass loading affected the GF. A decrease in the SOA mass loading led to increased GF and corresponding κGFvalues. However, in a supersaturation regime, the SOA mass loading and the size of the particles did not significantly alter the CCN activity of the SOA. Our CCN measurements showed higher κCCN values (κCCN = 0.20-0.24) than those observed in most monoterpene ozonolysis studies (κCCN = 0.1-0.14). This difference may have been due to the presence of the two endocyclic double bonds in the γ-terpinene structure, which may have affected the SOA chemical composition, in contrast to monoterpenes that contain an exocyclic double bond. Our comparisons of sub- and supersaturated conditions showed a larger range of κ values than other experiments. Average κCCN/κGF ratios of ~7 and 14 were obtained in the unseeded SOA experiments at low and high SOA mass loadings, respectively. The average κCCN of 0.23 indicated that the SOA produced during ozonolysis of γ-terpinene exhibited fairly high CCN activity.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Aerossóis/química , Poluentes Atmosféricos/química , Monoterpenos Cicloexânicos , Ozônio/química , Compostos Orgânicos Voláteis/química , Molhabilidade
8.
Chemosphere ; 276: 130193, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34088089

RESUMO

The gas-phase reaction of trans-2-pentenal (T2P) with Cl atoms was studied at atmospheric pressure and room temperature. A rate coefficient of (2.56 ± 0.83) × 10-10 cm3 molecule-1 s-1 was obtained using the relative rate method and isoprene, cyclohexane and ethanol as reference compounds. The kinetic study was carried out using a 300-L Teflon bag simulation chamber (IMT Lille Douai-France) and a 16-L Pyrex cell (UCLM-Ciudad Real-Spain), both coupled to the Fourier transform infrared (FTIR) technique. Gas-phase products and secondary organic aerosol (SOA) formation were studied at UCLM using a 16-L Pyrex cell and a 264-L quartz simulation chamber coupled to the FTIR and gas-chromatography-mass spectrometry (GC-MS) techniques. HCl, CO, and propanal were identified as products formed from the studied reaction and quantified by FTIR, the molar yield of the latter being (5.2 ± 0.2)%. Formic acid was identified as a secondary product and was quantified by FTIR with a yield of (6.2 ± 0.4)%. In addition, 2-chlorobutanal and 2-pentenoic acid were identified, but not quantified, by GC-MS as products. The SOA formation was investigated using a fast mobility particle sizer spectrometer. The observed SOA yields reached maximum values of around 7% at high particle mass concentrations. This work provides the first study of the formation of gaseous and particulate products for the reaction of Cl with T2P. A reaction mechanism is suggested to explain the formation of the observed gaseous products. The results are discussed in terms of structure-reactivity relationship, and the atmospheric implications derived from this study are commented as well.


Assuntos
Cinética , Aerossóis , Aldeídos , França , Espanha
9.
J Environ Sci (China) ; 95: 141-154, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32653174

RESUMO

Atmospheric simulation chambers, are unique tools for investigating atmospheric processes in the gas and heterogeneous phases. They can provide a controlled yet realistic environment that simulates atmospheric conditions. In the current study, a Teflon atmospheric simulation chamber of 600 L, named THALAMOS (thermally regulated atmospheric simulation chamber) has been developed and cross-validated. THALAMOS can be operated over the temperature range 233 to 373 K under both static and flow conditions. It is equipped with state of the art instrumentation (selective ion flow tube mass spectrometry (SIFT-MS), long path Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS), various analyzers) for the in-line monitoring of both reactants and products. THALAMOS was validated by measuring the rate coefficients of well documented reactions, i.e. the reaction of ethanol with OH radicals and the reaction of dichloromethane with Cl atoms, in a wide temperature range. Two different detection techniques were used in parallel, FTIR and SIFT-MS, to internally cross-validate the obtained results. The measured rate coefficients are in excellent agreement, both between each other and with the literature recommended values. Furthermore, the gas phase oxidation of toluene by Cl atoms (kinetics and product yields) was studied in the temperature range of 253 to 333 K. To the best of our knowledge, THALAMOS is a unique facility on national level and among a few smog chambers internationally that can be operated in such a wide temperature range providing the scientific community with a versatile tool to simulate both outdoor and indoor physicochemical processes.


Assuntos
Cloro , Radical Hidroxila , Clima , Cinética , Oxirredução
10.
Phys Chem Chem Phys ; 22(14): 7165-7168, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32232266

RESUMO

Recent experiments suggested that water catalyzes the reaction of OH radicals with alcohols, while another work showed the opposite result. Here, we resolve this disagreement and show that heterogeneous oxidation systematically biased the work showing the catalytic effect and corroborate that water does not catalyze the reaction of OH with alcohols.

11.
Opt Lett ; 45(7): 1611-1614, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32235955

RESUMO

In this Letter, the development of a custom-designed incoherent broadband cavity enhanced absorption spectrometer (IBBCEAS) and its application to in situ measurement of aerosol extinction near the ground surface are described in an effort to address the issue of missing data in the light detection and ranging (lidar) blind zone in the first hundreds of meters of the observation range. Combined measurements of aerosol extinction at the same location using lidar remote sensing at 355 nm and in situ IBBCEAS operating in the UV spectral region around 370 nm showed results with a good correlation (${{\rm R}^2} = {0.90}$R2=0.90) between the two measurement techniques. This Letter highlights a new strategy for near-end lidar calibration, using a ground-based compact and robust IBBCEAS located at the lidar measurement site to determine the vertical profile of the aerosol extinction coefficient with a higher accuracy.

12.
Angew Chem Int Ed Engl ; 58(15): 5013-5017, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30791189

RESUMO

Recent reports [Jara-Toro et al., Angew. Chem. Int. Ed. 2017, 56, 2166 and PCCP 2018, 20, 27885] suggest that the rate coefficient of OH reactions with alcohols would increase by up to two times in going from dry to high humidity. This finding would have an impact on the budget of alcohols in the atmosphere and it may explain differences in measured and modeled methanol concentrations. The results were based on a relative technique carried out in a small Teflon bag, which might suffer from wall reactions. The effect was reinvestigated using a direct fluorescence probe of OH radicals, and no catalytic effect of H2 O could be found. Experiments in a Teflon bag were also carried out, but the results of Jara-Toro et al. were not reproducible. Further theoretical calculations show that the water-mediated reactions have negligible rates compared to the bare reaction and that even though water molecules can lower the barriers of reactions, they cannot make up for the entropy cost.

13.
Nat Commun ; 9(1): 4343, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341291

RESUMO

Methanol is a benchmark for understanding tropospheric oxidation, but is underpredicted by up to 100% in atmospheric models. Recent work has suggested this discrepancy can be reconciled by the rapid reaction of hydroxyl and methylperoxy radicals with a methanol branching fraction of 30%. However, for fractions below 15%, methanol underprediction is exacerbated. Theoretical investigations of this reaction are challenging because of intersystem crossing between singlet and triplet surfaces - ∼45% of reaction products are obtained via intersystem crossing of a pre-product complex - which demands experimental determinations of product branching. Here we report direct measurements of methanol from this reaction. A branching fraction below 15% is established, consequently highlighting a large gap in the understanding of global methanol sources. These results support the recent high-level theoretical work and substantially reduce its uncertainties.

14.
Appl Opt ; 56(11): E116-E122, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28414388

RESUMO

Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) synchrotron analyses supplemented by density functional theory (DFT) anharmonic calculations have been undertaken to study the fundamental vibrational signatures of guaiacol and syringol, two methoxyphenol compounds found at the highest concentrations in fresh wood smoke and precursors of secondary organic aerosols (SOA) affecting the radiative balance and chemistry of the atmosphere. Nitroderivatives of these two compounds have also been studied experimentally for nitroguaiacol and theoretically for nitrosyringol. All the active fundamental vibrational bands have been assigned and compared to available gas phase measurements, providing a vibrational database of the main precursors for the analysis of SOA produced by atmospheric oxidation of methoxyphenols. In addition, the SOA formed in an atmospheric simulation chamber from the OH reaction with guaiacol and syringol were analyzed using the ATR-FTIR synchrotron spectroscopy and their hygroscopic properties were also investigated. The vibrational study confirms that nitroguaiacol and nitrosyringol are the main oxidation products of methoxyphenols by OH and are key intermediates in SOA production. The hydration experiments highlight the hydrophilic and hydrophobic characters of nitrosyringol and nitroguaiacol, respectively.

15.
Environ Sci Technol ; 51(4): 2170-2177, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28121426

RESUMO

The reaction between CH3O2 and OH radicals has been shown to be fast and to play an appreciable role for the removal of CH3O2 radials in remote environments such as the marine boundary layer. Two different experimental techniques have been used here to determine the products of this reaction. The HO2 yield has been obtained from simultaneous time-resolved measurements of the absolute concentration of CH3O2, OH, and HO2 radicals by cw-CRDS. The possible formation of a Criegee intermediate has been measured by broadband cavity enhanced UV absorption. A yield of ϕHO2 = (0.8 ± 0.2) and an upper limit for ϕCriegee = 0.05 has been determined for this reaction, suggesting a minor yield of methanol or stabilized trioxide as a product. The impact of this reaction on the composition of the remote marine boundary layer has been determined by implementing these findings into a box model utilizing the Master Chemical Mechanism v3.2, and constraining the model for conditions found at the Cape Verde Atmospheric Observatory in the remote tropical Atlantic Ocean. Inclusion of the CH3O2+OH reaction into the model results in up to 30% decrease in the CH3O2 radical concentration while the HO2 concentration increased by up to 20%. Production and destruction of O3 are also influenced by these changes, and the model indicates that taking into account the reaction between CH3O2 and OH leads to a 6% decrease of O3.


Assuntos
Atmosfera/química , Radical Hidroxila/química , Oceano Atlântico , Metanol , Modelos Teóricos
16.
J Phys Chem A ; 120(45): 8923-8932, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27790905

RESUMO

The reaction between CH3O2 and OH radicals has been studied in a laser photolysis cell using the reaction of F atoms with CH4 and H2O for the simultaneous generation of both radicals, with F atoms generated through 248 nm photolysis of XeF2. An experimental setup combining cw-Cavity Ring Down Spectroscopy (cw-CRDS) and high repetition rate laser-induced fluorescence (LIF) to a laser photolysis cell has been used. The absolute concentration of CH3O2 was measured by cw-CRDS, while the relative concentration of OH(v = 0) radicals was determined by LIF. To remove dubiety from the quantification of CH3O2 by cw-CRDS in the near-infrared, its absorption cross section has been determined at 7489.16 cm-1 using two different methods. A rate constant of k1 = (1.60 ± 0.4) × 10-10 cm3 s-1 has been determined at 295 K, nearly a factor of 2 lower than an earlier determination from our group ((2.8 ± 1.4) × 10-10 cm3 s-1) using CH3I photolysis as a precursor. Quenching of electronically excited I atoms (from CH3I photolysis) in collision with OH(v = 0) is suspected to be responsible for a bias in the earlier, fast rate constant.

17.
J Phys Chem A ; 119(51): 12781-9, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26608471

RESUMO

Dicarbonyls in the atmosphere mainly arise from secondary sources as reaction products in the degradation of a large number of volatile organic compounds (VOC). Because of their sensitivity to solar radiation, photodissociation of dicarbonyls can dominate the fate of these VOC and impact the atmospheric radical budget. The photolysis of 2,3-pentanedione (PTD) has been investigated for the first time as a function of pressure in a static reactor equipped with continuous wave cavity ring-down spectroscopy to measure the HO2 radical photostationary concentrations along with stable species. We showed that (i) Stern-Volmer plots are consistent with low OH-radical formation yields in RCO + O2 reactions, (ii) the decrease of the photodissociation rate due to pressure increase from 26 to 1000 mbar is of about 30%, (iii) similarly to other dicarbonyls, the Stern-Volmer analysis shows a curvature at the lower pressure investigated, which may be assigned to the existence of excited singlet and triplet PTD states, (iv) PTD photolysis at 66 mbar leads to CO2, CH2O and CO with yields of (1.16 ± 0.04), (0.33 ± 0.02) and (0.070 ± 0.005), respectively, with CH2O yield independent of pressure up to 132 mbar and CO yield in agreement with that obtained at atmospheric pressure by Bouzidi et al. (2014), and (v) the PTD photolysis mechanism remains unchanged between atmospheric pressure and 66 mbar. As a part of this work, the O2 broadening coefficient for the absorption line of HO2 radicals at 6638.21 cm(-1) has been determined (γO2 = 0.0289 cm(-1) atm(-1)).

18.
Environ Sci Technol ; 49(20): 12178-86, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26418727

RESUMO

Hydroxyketones are key secondary reaction products in the atmospheric oxidation of volatile organic compounds (VOCs). The fate of these oxygenated VOCs is however poorly understood and scarcely taken into account in atmospheric chemistry modeling. In this work, a combined investigation of the photolysis and temperature-dependent OH radical reaction of 4-hydroxy-2-butanone (4H2B) is presented. The objective was to evaluate the importance of the photolysis process relative to OH oxidation in the atmospheric degradation of 4H2B. A photolysis lifetime of about 26 days was estimated with an effective quantum yield of 0.08. For the first time, the occurrence of a Norrish II mechanism was hypothesized following the observation of acetone among photolysis products. The OH reaction rate coefficient follows the Arrhenius trend (280-358 K) and could be modeled through the following expression: k4H2B(T) = (1.26 ± 0.40) × 10(-12) × exp((398 ± 87)/T) in cm(3) molecule(-1) s(-1). An atmospheric lifetime of 2.4 days regarding the OH + 4H2B reaction was evaluated, indicating that OH oxidation is by far the major degradation channel. The present work underlines the need for further studies on the atmospheric fate of oxygenated VOCs.


Assuntos
Butanonas/química , Gases/química , Radical Hidroxila/química , Fotólise , Temperatura , Atmosfera , Cinética , Fatores de Tempo
19.
J Am Chem Soc ; 136(47): 16689-94, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25381864

RESUMO

For the first time quantitative measurements of the hydroperoxyl radical (HO2) in a jet-stirred reactor were performed thanks to a new experimental setup involving fast sampling and near-infrared cavity ring-down spectroscopy at low pressure. The experiments were performed at atmospheric pressure and over a range of temperatures (550-900 K) with n-butane, the simplest hydrocarbon fuel exhibiting cool flame oxidation chemistry which represents a key process for the auto-ignition in internal combustion engines. The same technique was also used to measure H2O2, H2O, CH2O, and C2H4 under the same conditions. This new setup brings new scientific horizons for characterizing complex reactive systems at elevated temperatures. Measuring HO2 formation from hydrocarbon oxidation is extremely important in determining the propensity of a fuel to follow chain-termination pathways from R + O2 compared to chain branching (leading to OH), helping to constrain and better validate detailed chemical kinetics models.

20.
J Phys Chem A ; 118(40): 9482-90, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25211148

RESUMO

The kinetics of the reactions of limonene with OH and OD radicals has been studied using a low-pressure flow tube reactor coupled with a quadrupole mass spectrometer: OH + C10H16 → products (1), OD + C10H16 → products (2). The rate constants of the title reactions were determined using four different approaches: either monitoring the kinetics of OH (OD) radicals or limonene consumption in excess of limonene or of the radicals, respectively (absolute method), and by the relative rate method using either the reaction OH (OD) + Br2 or OH (OD) + DMDS (dimethyl disulfide) as the reference one and following HOBr (DOBr) formation or DMDS and limonene consumption, respectively. As a result of the absolute and relative measurements, the overall rate coefficients, k1 = (3.0 ± 0.5) × 10(-11) exp((515 ± 50)/T) and k2 = (2.5 ± 0.6) × 10(-11) exp((575 ± 60)/T) cm(3) molecule(-1) s(-1), were determined at a pressure of 1 Torr of helium over the temperature ranges 220-360 and 233-353 K, respectively. k1 was found to be pressure independent over the range 0.5-5 Torr. There are two possible pathways for the reaction between OH (OD) and limonene: addition of the radical to one of the limonene double bonds (reactions 1a and 2a ) and abstraction of a hydrogen atom (reactions 1b and 2b ), resulting in the formation of H2O (HOD). Measurements of the HOD yield as a function of temperature led to the following branching ratio of the H atom abstraction channel: k2b/k2 = (0.07 ± 0.03) × exp((460 ± 140)/T) for T = (253-355) K.


Assuntos
Cicloexenos/química , Deutério/química , Hidrogênio/química , Radical Hidroxila/química , Terpenos/química , Brometos/química , Dissulfetos/química , Cinética , Limoneno , Pressão , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA