Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 48(6): 963-974, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36932179

RESUMO

A link between gut dysbiosis and the pathogenesis of brain disorders has been identified. A role for gut bacteria in drug reward and addiction has been suggested but very few studies have investigated their impact on brain and behavioral responses to addictive drugs so far. In particular, their influence on nicotine's addiction-like processes remains unknown. In addition, evidence shows that glial cells shape the neuronal activity of the mesolimbic system but their regulation, within this system, by the gut microbiome is not established. We demonstrate that a lack of gut microbiota in male mice potentiates the nicotine-induced activation of sub-regions of the mesolimbic system. We further show that gut microbiota depletion enhances the response to nicotine of dopaminergic neurons of the posterior ventral tegmental area (pVTA), and alters nicotine's rewarding and aversive effects in an intra-VTA self-administration procedure. These effects were not associated with gross behavioral alterations and the nicotine withdrawal syndrome was not impacted. We further show that depletion of the gut microbiome modulates the glial cells of the mesolimbic system. Notably, it increases the number of astrocytes selectively in the pVTA, and the expression of postsynaptic density protein 95 in both VTA sub-regions, without altering the density of the astrocytic glutamatergic transporter GLT1. Finally, we identify several sub-populations of microglia in the VTA that differ between its anterior and posterior sub-parts, and show that they are re-organized in conditions of gut microbiota depletion. The present study paves the way for refining our understanding of the pathophysiology of nicotine addiction.


Assuntos
Microbioma Gastrointestinal , Síndrome de Abstinência a Substâncias , Camundongos , Masculino , Animais , Nicotina/farmacologia , Área Tegmentar Ventral , Dopamina/metabolismo , Recompensa , Síndrome de Abstinência a Substâncias/metabolismo , Neuroglia/metabolismo
2.
Mol Psychiatry ; 26(7): 2854-2871, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33664475

RESUMO

Breastmilk contains bioactive molecules essential for brain and cognitive development. While sialylated human milk oligosaccharides (HMOs) have been implicated in phenotypic programming, their selective role and underlying mechanisms remained elusive. Here, we investigated the long-term consequences of a selective lactational deprivation of a specific sialylated HMO in mice. We capitalized on a knock-out (KO) mouse model (B6.129-St6gal1tm2Jxm/J) lacking the gene responsible for the synthesis of sialyl(alpha2,6)lactose (6'SL), one of the two sources of sialic acid (Neu5Ac) to the lactating offspring. Neu5Ac is involved in the formation of brain structures sustaining cognition. To deprive lactating offspring of 6'SL, we cross-fostered newborn wild-type (WT) pups to KO dams, which provide 6'SL-deficient milk. To test whether lactational 6'SL deprivation affects cognitive capabilities in adulthood, we assessed attention, perseveration, and memory. To detail the associated endophenotypes, we investigated hippocampal electrophysiology, plasma metabolomics, and gut microbiota composition. To investigate the underlying molecular mechanisms, we assessed gene expression (at eye-opening and in adulthood) in two brain regions mediating executive functions and memory (hippocampus and prefrontal cortex, PFC). Compared to control mice, WT offspring deprived of 6'SL during lactation exhibited consistent alterations in all cognitive functions addressed, hippocampal electrophysiology, and in pathways regulating the serotonergic system (identified through gut microbiota and plasma metabolomics). These were associated with a site- (PFC) and time-specific (eye-opening) reduced expression of genes involved in central nervous system development. Our data suggest that 6'SL in maternal milk adjusts cognitive development through a short-term upregulation of genes modulating neuronal patterning in the PFC.


Assuntos
Lactação , Leite Humano , Animais , Cognição , Feminino , Lactose , Camundongos , Oligossacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA