Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068575

RESUMO

The entomopathogenic endophytic fungus Beauveria bassiana can colonize plants resulting in growth promotion and protection against phytopathogenic microorganisms. However, physiological changes in potato plants (Solanum tuberosum) during this interaction are poorly understood. In the present work, gas chromatography-mass spectrometry and high-performance liquid chromatography were used to analyze sterol, fatty acid, and phenolic acid concentrations in potato plants inoculated with B. bassiana conidia in soil. We showed an increase in amounts of stigmasterol, minor sterol compounds, and some hydroxy fatty acids in leaves after the fungal treatment. Moreover, levels of hydroxycinnamic acids, especially chlorogenic acid, were elevated in roots following the B. bassiana inoculation. We propose that these changes could have been caused by oxidative reactions, and the alterations may have resulted in growth-stimulatory and protective effects of B. bassiana on the plants.

2.
PeerJ ; 11: e15726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583910

RESUMO

Species of the genus Metarhizium are characterized by a multitrophic lifestyle of being arthropod parasites, rhizosphere colonizers, endophytes, and saprophytes. The process of adaptation to various organisms and substrates may lead to specific physiological alterations that can be elucidated by passaging through different hosts. Changes in virulence and cultivation properties of entomopathogenic fungi subcultured on different media or passaged through a live insect host are well known. Nevertheless, comparative in-depth physiological studies on fungi after passaging through insect or plant organisms are scarce. Here, virulence, plant colonization, hydrolytic enzymatic activities, toxin production, and antimicrobial action were compared between stable (nondegenerative) parent strain Metarhizium robertsii MB-1 and its reisolates obtained after eight passages through Galleria mellonella larvae or Solanum lycopersicum or after subculturing on the Sabouraud medium. The passaging through the insect caused similar physiological alterations relative to the plant-based passaging: elevation of destruxin A, B, and E production, a decrease in protease and lipase activities, and lowering of virulence toward G. mellonella and Leptinotarsa decemlineata as compared to the parent strain. The reisolates passaged through the insect or plant showed a slight trend toward increased tomato colonization and enhanced antagonistic action on tomato-associated bacterium Bacillus pumilus as compared to the parental strain. Meanwhile, the subculturing of MB-1 on the Sabouraud medium showed stability of the studied parameters, with minimal alterations relative to the parental strain. We propose that the fungal virulence factors are reprioritized during adaptation of M. robertsii to insects, plants, and media.


Assuntos
Metarhizium , Mariposas , Animais , Virulência , Insetos/microbiologia , Mariposas/microbiologia , Plantas
3.
Mycotoxin Res ; 39(2): 135-149, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37071305

RESUMO

Tenuazonic acid (TeA) is synthesized by phytopathogenic and opportunistic fungi and is detected in a broad range of foods. This natural compound is of interest in terms of toxicity to animals, but its mechanisms of action on insects are poorly understood. We administered TeA orally at different concentrations (0.2-5.0 mg/[gram of a growth medium]) to the model insect Galleria mellonella, with subsequent estimation of physiological, histological, and immunological parameters in different tissues (midgut, fat body, and hemolymph). Susceptibility of the TeA-treated larvae to pathogenic microorganisms Beauveria bassiana and Bacillus thuringiensis was also analyzed. The feeding of TeA to the larvae led to a substation delay of larval growth, apoptosis-like changes in midgut cells, and an increase in midgut bacterial load. A decrease in activities of detoxification enzymes and downregulation of genes Nox, lysozyme, and cecropin in the midgut and/or hemocoel tissues were detected. By contrast, genes gloverin, gallerimycin, and galiomycin and phenoloxidase activity proved to be upregulated in the studied tissues. Hemocyte density did not change under the influence of TeA. TeA administration increased susceptibility of the larvae to B. bassiana but diminished their susceptibility to B. thuringiensis. The results indicate that TeA disturbs wax moth gut physiology and immunity and also exerts a systemic action on this insect. Mechanisms underlying the observed changes in wax moth susceptibility to the pathogens are discussed.


Assuntos
Mariposas , Ácido Tenuazônico , Animais , Larva , Mariposas/genética , Mariposas/microbiologia , Fungos
4.
J Fungi (Basel) ; 7(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34575812

RESUMO

The study of fungal antibiotics in their competitive interactions with arthropods may lead to the development of novel biorational insecticides. Extracts of Alternaria tenuissima MFP253011 obtained using various methods showed a wide range of biological activities, including entomotoxic properties. Analysis of their composition and bioactivity allowed us to reveal several known mycotoxins and unidentified compounds that may be involved in the entomotoxic activity of the extracts. Among them, tenuazonic acid (TeA), which was the major component of the A. tenuissima extracts, was found the most likely to have larvicidal activity against Galleria mellonella. In the intrahaemocoel injection bioassay, TeA was toxic to G. mellonella and of Zophobas morio with an LT50 of 6 and 2 days, respectively, at the level of 50 µg/larva. Administered orally, TeA inhibited the growth of G. mellonella larvae and caused mortality of Acheta domesticus adults (LT50 7 days) at a concentration of 250 µg/g of feed. TeA showed weak contact intestinal activity against the two phytophages, Tetranychus urticae and Schizaphis graminum, causing 15% and 27% mortality at a concentration of 1 mg/mL, respectively. TeA was cytotoxic to the Sf9 cell line (IC50 25 µg/mL). Thus, model insects such as G. mellonella could be used for further toxicological characterization of TeA.

5.
Microorganisms ; 9(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202827

RESUMO

Beauveria and Metarhizium fungi are facultative plant endophytes that provide plant growth-stimulating, immunomodulatory, and other beneficial effects. However, little is known about the level of plant colonization by these fungi under natural conditions. We assessed the endophytic colonization of potatoes (Solanum tuberosum) with entomopathogenic fungi at their natural load in soils (102-104 colony-forming units per g). Microbiological analyses of soils and plant organs, as well as a metagenomic analysis of potato roots and leaves, were conducted in three locations in Western Siberia, consisting of conventional agrosystems and kitchen gardens. The fungi were isolated at a relatively high frequency from unsterilized roots (up to 53% of Metarhizium-positive plants). However, the fungi were sparsely isolated from the internal tissues of roots, stems, and leaves (3%). Among the genus Metarhizium, two species, M. robertsii and M. brunneum, were detected in plants as well as in soils, and the first species was predominant. A metagenomic analysis of internal potato tissues showed a low relative abundance of Beauveria and Metarhizium (<0.3%), and the communities were represented primarily by phytopathogens. We suggest that colonization of the internal tissues of potatoes occurs sporadically under a natural load of entomopathogenic fungi in soils. The lack of stable colonization of potato plants with Beauveria and Metarhizium may be due to competition with phytopathogens.

6.
PeerJ ; 8: e9895, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32995085

RESUMO

Rhizoctonia potato disease is widespread in the world and causes substantial yield and quality losses in potato. This study aimed to evaluate the efficacy of entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana in the inhibition of potato Rhizoctonia complex disease. The efficacy of the entomopathogenic fungi M. robertsii and B. bassiana in the defense of potato against Rhizoctonia disease (stem cancer, black scrulf and other forms of manifestation on tubers) was estimated under field conditions in Western Siberia. Preplanting treatment of the tubers with B. bassiana decreased Rhizoctonia disease in the stems and stolons. At the same time, treatment with M. robertsii did not cause a decrease in Rhizoctonia disease in these organs. However, both fungi decreased the sclerotium index on the tubers of new crops. We demonstrated two mechanisms of inhibition of Rhizoctonia solani by M. robertsii and B. bassiana, including (1) direct effect, expressed as inhibition of R. solani sclerotium formation in cocultivation assays, and (2) indirect effect, which is associated with increased peroxidase activity in potato roots under the influence of colonization by entomopathogenic fungi. We suggest that the treatment of seed tubers with B. basiana can effectively manage Rhizoctonia disease during the plant vegetative season and that both fungi significantly improve the quality of the new tuber crop.

7.
J Fungi (Basel) ; 6(3)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927906

RESUMO

Various insect bacterial associates are involved in pathogeneses caused by entomopathogenic fungi. The outcome of infection (fungal growth or decomposition) may depend on environmental factors such as temperature. The aim of this study was to analyze the bacterial communities and immune response of Galleria mellonella larvae injected with Cordyceps militaris and incubated at 15 °C and 25 °C. We examined changes in the bacterial CFUs, bacterial communities (Illumina MiSeq 16S rRNA gene sequencing) and expression of immune, apoptosis, ROS and stress-related genes (qPCR) in larval tissues in response to fungal infection at the mentioned temperatures. Increased survival of larvae after C. militaris injection was observed at 25 °C, although more frequent episodes of spontaneous bacteriosis were observed at this temperature compared to 15 °C. We revealed an increase in the abundance of enterococci and enterobacteria in the midgut and hemolymph in response to infection at 25 °C, which was not observed at 15 °C. Antifungal peptide genes showed the highest expression at 25 °C, while antibacterial peptides and inhibitor of apoptosis genes were strongly expressed at 15 °C. Cultivable bacteria significantly suppressed the growth of C. militaris. We suggest that fungi such as C. militaris may need low temperatures to avoid competition with host bacterial associates.

8.
Microb Pathog ; 141: 103995, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31988006

RESUMO

Entomopathogenic fungi form different strategies of interaction with their insect hosts. The influence of fungal infection on insect physiology has mainly been studied for generalists (Metarhizium, Beauveria), but studies of specialized teleomorphic species, such as Cordyceps militaris, are rare. We conducted a comparative analysis of the immune reactions of the wax moth Galleria mellonella after injection with blastospores of C. militaris (Cm) and Metarhizium robertsii (Mr) in two doses (400 and 4000 per larva). Cm-injected insects died more slowly and were more predisposed to bacterial infections than Mr-injected insects. It was shown that Cm infection led to a predominance of necrotic death of hemocytes, whereas Mr infection led to apoptotic death of cells. Cm-infected insects produced more dopamine and reactive oxygen species compared to Mr-infected insects. Moreover, Cm injection led to weak inhibition of phenoloxidase activity and slight enhancement of detoxification enzymes compared to Mr-injected insects. Blastospores of Cm that were cultivated in artificial medium (in vitro) and proliferated in wax moth hemolymph (in vivo) were characterized by equal intensity of fluorescence after staining with Calcofluor White. In contrast, Mr blastospores that proliferated in the wax moth had decreased fluorescence intensity compared to Mr blastospores grown in medium. The results showed that insects combat Cm infection more actively than Mr infection. We suggest that Cm uses fewer universal tools of killing than Mr, and these tools are available because of specific interactions of Cm with hosts and adaptation to certain host developmental stages.


Assuntos
Hypocreales , Mariposas/microbiologia , Micoses/imunologia , Animais , Apoptose , Cordyceps/imunologia , Dopamina/metabolismo , Hemócitos/metabolismo , Hemócitos/microbiologia , Interações Hospedeiro-Patógeno , Hypocreales/imunologia , Hypocreales/patogenicidade , Imunidade , Larva/imunologia , Larva/microbiologia , Metarhizium/imunologia , Monofenol Mono-Oxigenase/metabolismo , Mariposas/imunologia , Necrose , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos/imunologia
9.
Fungal Biol ; 123(12): 927-935, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31733735

RESUMO

Strains of entomopathogenic fungi may have substantial differences in their final stages of mycosis. Insect cadavers are usually overgrown with mycelium after colonization of the insect body, but in many cases, bacterial decomposition of the colonized hosts occurs. We used two Metarhizium robertsii strains in the work: Mak-1 (cadavers become overgrown with mycelium and conidia) and P-72 (cadavers decay after fungal colonization). We conducted a comparative analysis of gut and cadaver microbiota in Colorado potato beetle larvae using 16S rRNA gene sequencing after infection with these strains. In addition, we estimated the content of different forms of nitrogen in cadavers and the influence of cadavers on the growth of Solanum lycopersicum on sand substrates under laboratory conditions. It was shown that infections did not lead to a significant shift in the midgut bacterial communities of infected insects compared to those of untreated insects. Importantly, bacterial communities were similar in both types of cadaver, with predominantly enterobacteria. Decomposing cadavers (P-72) were characterized by increased nitrate and ammonium, and they had a stronger growth-promoting effect on plants compared to cadavers overgrown with mycelium and conidia (Mak-1). We also estimated the colonization and growth of plants after treatment with conidia of both strains cultivated on artificial medium. Both cultures successfully colonized plants, but strain P-72 showed stronger growth promotion than Mak-1. We propose that the use of deviant strains that are unable to sporulate on cadavers leads to a faster (though only passive) flow of nitrogen from killed insects to plants.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Besouros/microbiologia , Microbiota , Mudanças Depois da Morte , Amônia/análise , Animais , Bactérias/classificação , Bactérias/genética , Cadáver , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Metarhizium/crescimento & desenvolvimento , Nitratos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
J Insect Physiol ; 116: 106-117, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31077710

RESUMO

Susceptibility to the fungus Metarhizium robertsii and changes in host defences were evaluated in different stages of the intermoult period (4-6 h, 34-36 h and 84-86 h post moult in IV larval instars) of the Colorado potato beetle. A significant thickening of the cuticle during larval growth was accompanied by decreases in cuticle melanization, phenoloxidase activity and epicuticular hydrocarbon contents (C28-C32). At the same time, a decrease in the conidial adhesion rate and an increase in resistance to the fungus were observed. In addition, we recorded significant elevation of the encapsulation rate and total haemocyte counts in the haemolymph during the specified period. The activity of detoxification enzymes decreased in the haemolymph but increased in the fat body during larval growth. No significant differences in the fatty acid content in the epicuticle were observed. The role of developmental disorders in susceptibility to entomopathogenic fungi is also discussed.


Assuntos
Antibiose , Besouros/fisiologia , Metarhizium/fisiologia , Animais , Besouros/crescimento & desenvolvimento , Besouros/microbiologia , Corpo Adiposo/enzimologia , Corpo Adiposo/crescimento & desenvolvimento , Hemolinfa/enzimologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/fisiologia
11.
Parasitology ; 146(4): 472-478, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30319087

RESUMO

Hexokinase (HK) is a core glycolytic enzyme of Microsporidia which regulates host cell metabolic processes. The goal of the present study was to test for the utility of HK for molecular phylogenetics, species identification and molecular detection of microsporidia in infected insects. HK sequence-based reconstructions were essentially similar to those based upon largest subunit RNA polymerase (RPB1) gene sequences, as well as previously published rRNA gene and genome-based trees. Comparing HK sequences allowed clear differentiation of closely related taxa, such as Nosema bombycis and Nosema pyrausta. In Nosema ceranae, unique SNPs were found for an isolate from wild colonies of the Burzyan dark honey bee as compared with the isolates from domesticated European honey bee. Similarly, in Encephalitozoon cuniculi, HK was as effective as RPB1 for discrimination of isolates belonging to different ITS genotypes. Amplification using species-specific primers flanking short fragments at the 3'-end of HK gene showed the presence of infection in insect tissues infected with N. pyrausta, Nosema ceranae and Paranosema (Antonospora) locustae. For the latter parasite species, HK expression was also demonstrated at early stages of infection using total mRNA extracts of locust larvae. These results indicate the suitability of HK as a novel tool for molecular genetic studies of Microsporidia.

12.
Pest Manag Sci ; 74(3): 598-606, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28945317

RESUMO

BACKGROUND: The search for compounds that interact synergistically with entomopathogenic fungi is aimed at enhancing the efficacy and stability of biological products against pest insects, for example, against the Colorado potato beetle (CPB). We hypothesized that fluorine-containing derivatives of usnic acid (FUA) might be candidates for the development of multicomponent bio-insecticides. The aim of this study was to analyze the co-influence of FUA and Beauveria bassiana on the survival and immune-physiological reactions of CPB larvae. RESULTS: Synergy between FUA and B. bassiana was observed after treatment of second, third and fourth larvae instars under laboratory conditions. Furthermore, synergy was observed in field trials in continental climate conditions in southeastern Kazakhstan. In a field experiment, the median lethal time was shortened three-fold, and cumulative mortality for 15 days increased by 36% in the combined treatment compared with a fungal infection alone. FUA treatment delayed larval development, decreased the total hemocyte count, and increased both the phenoloxidase activity in integuments and the detoxification enzyme rate in hemolymph. A combined treatment with fungus and FUA led to increases in the aforementioned changes. CONCLUSION: Toxicosis caused by FUA provides a stable synergistic effect between FUA and B. bassiana. The combination can be promising for the development of highly efficient products against CPB. © 2017 Society of Chemical Industry.


Assuntos
Beauveria , Benzofuranos , Besouros , Flúor , Controle de Insetos , Inseticidas , Exoesqueleto/efeitos dos fármacos , Exoesqueleto/imunologia , Animais , Besouros/crescimento & desenvolvimento , Hemolinfa/efeitos dos fármacos , Hemolinfa/imunologia , Imunidade Inata/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Longevidade/efeitos dos fármacos , Controle Biológico de Vetores
13.
J Invertebr Pathol ; 149: 1-7, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694120

RESUMO

Thirty-four isolates of Metarhizium spp. from Russian collections were genotyped using 5' EF-1α gene sequence analysis. Four species were identified, of which M. robertsii and M. brunneum were the most frequent, whereas M. anisopliae and M. pemphigum were sporadic. Radial growth studies in the temperature range of 10-40°C revealed that growth at high temperatures (35-37.5°C) was inherent for M. robertsii isolates but not for M. brunneum isolates. In contrast, M. brunneum isolates were more active at cold temperatures (10°C) compared to M. robertsii. Virulence was evaluated against larvae of the Colorado potato beetle (CPB), Leptinotarsa decemlineata Say, under two regimes: humid (21°C, 80% relative humidity (RH)) and arid (31°C, 55% RH). M. brunneum isolates were less virulent compared to M.robertsii under both regimes. M. robertsii activity did not differ under the two regimes, but M. brunneum was less virulent under the arid regime compared to the humid one. A field experiment under natural conditions (steppe zone of Western Siberia) with daily ranges of 10-43°C and 13-98% RH showed that M. robertsii was significantly more active than M. brunneum against CPB larvae.


Assuntos
Besouros/microbiologia , Larva/microbiologia , Metarhizium/fisiologia , Controle Biológico de Vetores/métodos , Animais , Temperatura Baixa , Temperatura Alta , Metarhizium/isolamento & purificação
14.
J Invertebr Pathol ; 140: 8-15, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27546865

RESUMO

The interaction between the entomopathogenic fungus Metarhizium robertsii and natural avermectin metabolites of the actinomycete Streptomyces avermitilis were investigated on Colorado potato beetle larvae. A synergy in the mortality of larvae was detected after simultaneous treatment with half-lethal doses of avermectins (commercial name actarophit) 0.005% and fungus (5×105conidia/ml). The treatment with avermectins led to rapid fungal colonization of the hemolymph. The defense strategies of insects infected by fungus and treated with avermectins and untreated insects were compared to investigate the mechanisms of this synergy. We have shown an increase in hemocytes, especially immunocompetent cells - plasmatocytes and granular cells in the initial stages of mycosis (third day post inoculation). In contrast, avermectins suppressed cellular immunity in hemolymph. Specifically, avermectins dramatically decreased the count of granular cells in larvae infected and uninfected with fungus. Apoptosis inducement and hemocyte necrosis under the influence of avermectins has been shown in vitro as one of the possible reasons for hemocyte mortality. In addition, avermectins enhanced the activity of phenoloxidases in integuments and hemolymph and increased the activity of glutathione-S-transferases activity in the fat body and hemolymph of infected and uninfected larvae, thereby intensifying the development of fungal infection by M. robertsii in Colorado potato beetle larvae. The combination of fungal infection and avermectins constitutes a new perspective for developing multicomponent bioinsecticides.


Assuntos
Besouros/parasitologia , Inseticidas , Ivermectina/análogos & derivados , Controle Biológico de Vetores/métodos , Animais , Larva , Metarhizium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA